THE MAGAZINE FOR SYSTEMS AND SOLUTIONS DEVELOPERS [T & 1 B $3.95

DATABASE GATEWAYS:
FORM AND FUNCTION

SHARED LIBRARIES
IN UNIX SYSTEMS

UNIX FOR THE 386:
ISC, SCO COMPARED.

|
|
\

THE

BIG

PICTURE

In order to make effective business decisions,

users today need access to information located on remote data

management systems supplied by multiple vendors.

Significant technical issues must be resolved before users

can have true plug-and-play access to data.

a n d E . w
f UNIX is ever to be widely
used in the commercial arena,
it must first become a bona fide

participant in corporate America’s

data processing environments, in
which IBM mainframes and DEC
minicomputers currently hold sway.

As straightforward as this asser-

tion is, it ushers in a host of

complex implications. Among them
is one on which we'll focus our
attention here: in corporate data
processing environments, UNIX
applications must offer so-called

“seamless” access to information

stored in foreign databases—such

as IMS, DB2, or RDB—located on
remote mainframes,

In order to make effective busi-
ness decisions, users today need
access to information located

throughout their organizations. |

I S H O P

A 8 I O L E K

They should be able to gain this
access directly from their desktop
machines, whether they are con-
nected via a workstation, a PC,
or a timesharing terminal. Yet the
bulk of corporate information is
controlled by data management
systems supplied by multiple ven-
dors. Often, different hardware
platforms, operating systems, or
database management systems
(DBMSs) are implemented within
a single company. As a result,
one department is cut off from
information held by another. This
leads to low productivity, organiza-
tional inefficiency, and ill-in-
formed management.

Moreover, the fluidity of today’s
business environments and rapid
technological progress require that
information management strate-

ers Inc., and Progress Software
Corp. It provides customers with
wide availability on a large number
of platforms, if the vendor can
afford the porting, testing, and
support costs that go with it. While
some vendors may have solved
the access problem for their cus-
tomers this way, in so doing
they've created a nightmare for
themselves. The same executable
cannot access data located in dif-
ferent sources. These vendors are
therefore spending a good portion
of their time porting, modifying
code, and testing in order to
support a wide range of incompati-
ble DBMS products. It's a risky
venture at best.

Vendor-Specific Client Access
to Remote Data. Some companies
have decided to design and build
their own protocols as a way of
offering access to multiple data
sources from a specific client plat-
form. CL/1, developed by Network
Innovations (a wholly owned sub-
sidiary of Apple Computer), is an
example of this approach. CL/1
offers Macintosh users access to a
predefined set of SQL databases,
but does not, however, solve the
critical problems associated with
differences in system catalogs. Be-
cause CL/1 is engineered for a
specific set of data management
systems, it has to be modified to
allow access to new ones. Further-
more, CL/1 client applications are
not widely available outside of the
Macintosh environment.

“Pass-Through" Data Gate-
ways. With this approach, client
applications can in fact get to other
DBMS systems, but only by at-
taching themselves to a propri-
etary server. Good examples of this
architecture are Sybase’s Open
Server and Oracle’s SQL*Connect
products.

Under the Sybase scheme, a
client application attaches itself to
a Sybase server that contains a
non-Sybase database procedure.
The procedure holds all the code
required to access the foreign
database: the error-handling, data-
reformatting, and catalog-access
routines. The procedure is essen-
tially, then, a data gateway con-
structed for a predefined query.
This approach allows client appli-
cations to remain portable, because

foreign database code is stored in
the server’s procedure. It requires,
however, that a proprietary server
always be present, that code exist-
ing on the foreign database plat-
form understand the procedure
call, and that a very complicated
gateway procedure be written for
each foreign database. This meth-
od allows data to be qualified on
the non-Sybase host and down-
loaded to the proprietary Sybase
server. Users are locked into using
an SQL engine that may not be
their first choice for a number of
reasons—performance and feature
set among them. In addition, pre-
defined procedures mean that no
ad hoc querying of the foreign
database is supported.

Oracle’s gateway product, on the
other hand, allows Oracle client
applications to access a DB2 or
SQL/DS database (see “Rites of
Passage”, p.48). The Oracle ap-
proach involves hard-coding con-
nections between clients and for-
eign data managers, making the
clients unportable as well as diffi-
cult to code. It allows a single client
application to use different query
languages to access different data-
bases, rather than providing a
single query language to access
multiple DBMSs. It offers no abili-
ty to access data in non-relational
databases or file systems, and
offers no common access to foreign
database catalogs.

In summary, all of these ap-
proaches solve some of the techni-
cal issues involved in transparent
data access, but none of them
solves all or even most of the issues.
Each requires a great deal of work on

the part of developers to gain access
to each additional data source.

If user applications are going
to be able to access all the data
residing in different formats in
today’s corporations, they will
need to have a single interface
that is machine-, network-, and
data-independent. To meet with
wide acceptance, such an interface
would need to be based on industry
standards. The goal of database
vendors is to offer developers
the ability to develop a single
version of an application that can
access any type of data anywhere,
without any recoding (this is the
meaning of transparency). Another
goal is to allow users to purchase a
single executable that can access
any type of data in any machine
location on a network. In both
cases, the major objective is to
allow applications to maintain data
access even when data changes
locations or is moved to a different
type of database.

In its new release of the Ingres
database product (Release 6), Re-
lational Technology Inc. (RTI)
includes three components that
vield data-type independence for
applications, and that specify a
consistent data interface, a com-
mon query language, a consistent
communications mechanism, and
common-to-proprietary-construct-
mapping processes (gateways) that
reside on foreign database nodes.
Ingres Release 6 also provides
complementary location transpar-
ency, allowing the data-access solu-
tion to extend across multiple
machines and network types.

TI's Open Data Access is
aimed at providing two ca-
pabilities critical to infor-
mation management in today’s
computer environments: data ac-
cessibility and application porta-
bility across heterogeneous data-
bases and file systems (see Figure 1),
Universal accessibility, if at-
tainable, would mean that users
and developers, by adding the
appropriate database gateways,
would be able to use or develop
applications that could, without
modification, access data in incom-
patible relational and non-rela-
tional databases and file systems.
Such applications would be devel-
oped once and only once, and
they could access data residing in

any database for which a data
gateway had been provided. Uni-
versal portability describes the
hypothetical situation in which
developers have the ability to port
a given application to different
platforms and run them on top of
different types of databases with
minimum code rewriting, thanks to
the implementation of a consistent
data interface.

The key to open data access is
data-type transparency. It is made
possible through the specification
of a layer of data transparency—a
common client application inter-

face to all data. The interface
implemented by RTI includes a
common query language and set of
data types, a generic set of error
codes, a common system catalog
specification, and a consistent com-
munications protocol. All the propri-
etary features of underlying data
managers are hidden by data gate-
ways, which translate proprietary
features into their common applica-
tion interface counterparts—DB2-
specific errors into generic errors,
for example, or IMS catalog struc-
tures into common system catalog
structures, or Open SQL to RMS-
indexed file-access routines. Seen
from the client-application side,
the data source being accessed
always appears to be a relational
database of the same type. The
underlying foreign data manager
always “thinks” that it is being
accessed by a client of its own type.

Without the specification of a
consistent client interface to all
data, data-type-independent ap-
plication development would not
be possible.

Open SQL is a query language
that applications may use to access
relational, non-relational, or file-
system data (see Figure 2). RTI
developers have composed the doc-
ument defining this greatest com-
mon denominator of the SQL
variants used by the industry’s
major RDBMSs: DB2, RDB,
Tandem, and the ANSI Level I
Standard (SQL-1). All Ingres Re-
lease 6 products generate Open
SQL, and all Release 6 tools allow
for the building of Open SQL,
vendor-independent database ap-
plications. Applications developers
who use only this set of SQL
statements should be able to de-
sign applications that are portable
to all relational, non-relational,
and file system data gateways that
implement Open SQL. Developers
can choose to use “portable” SQL
statements, or to use the dialect of
a particular DBMS product. While
Open SQL allows a “pass-through™
mode to execute proprietary data
manager statements directly, ap-
plication portability is lost if this
mode is used.

DBMS products that use Open
SQL and define a reasonably large
set of data types commonly used by
the industry (integer, character,
floating point, and others) are a

first step toward implementing a
much broader set of functionality
in the language itself.

key component of the Open

SQL language specification

is the handling of error
messages. Using the ANSI Level 11
SQLSTATE error specification as
a model, developers at RTI have
modified Ingres so that it supports
a minimal set of “generic” error
messages. Developers can now code
applications using this set of about
40 messages instead of the more
than 3,000 DBMS-specific error
messages that are usually support-
ed in an RDBMS product. For
DBMS-specific error handling,
each generic error message has a
proprietary error code attached.

Developers can also count on the
appropriate Ingres gateways to
map proprietary database error
codes, providing maximum appli-
cations portability across and ac-
cessibility to other databases.

To resolve the question of in-
compatible system catalogs, RTI
has defined a uniform set of
database views for delivery with its
RDBMS products. Once applica-
tions developers use them, all
system catalogs look the same to
the program, whether it is running
with Ingres or another database
system. These views present a
consistent look at tables, forms,
columns, and entities, freeing the
developer from having to know the

MVS

Common
Common

VMS

MVS

Portability

Figure 1 — Two capabllities are critical to information management in today's computer environments, with their heterogeneous databases and
file systems: data accessibility and appilication portability. Using the Open SQL, GCA, and gateway components shown above with an additional
networking component, applications located on a particular machine can access data stored in different databases at dierent locations. In
addition, applications can be ported, with minimal recoding, to other platforms running different databases.

specifics of a particular DBMS.

For obvious reasons, corporate
MIS directors are keen on protect-
ing their investments in data
stored under proprietary data
management systems—be they re-
lational DBMSs such as DB2,
SQL/DS systems, or RDB; non-
relational DBMSs such as
IMS/DB; or non-database data
sources such as DEC’s RMS file
management system or IBM’s
VSAM.

One way to provide access to
proprietary data sources is to pro-
vide database gateways, which are
programs that run on a host
machine that holds a foreign data-
base. The design rule RTI used in
putting such gateways together

was that application code must |

operate identically whether it is
accessing data in a native database
or data stored in a foreign format.

Ingres data gateways are inde-
pendent processes that map consis-
tent constructs into the proprietary
equivalents on the underlying data
manager. Open SQL statements
sent by a client application to a
proprietary server are intercepted
by the data gateway process and
translated into the appropriate
proprietary access language. Open
SQL statements might be translat-
ed into, for example, an RMS
indexed file access routine. The
proprietary server then executes
the access routine and returns data
to the gateway process. The gate-

way translates proprietary data
types to Open SQL data types—a
DB2 gateway, for instance, trans-
lates a DB2 data type into an Open
SQL data type. If an error occurs,
the gateway translates the propri-
etary error code sent by the server
into a generic error and prepends it |
to the proprietary error code before
returning the error code to the
client application.

If the client application needs
access to the proprietary server’s
system catalogs, the client applica-
tion accesses the common system
catalog, which is then translated
into a proprietary catalog-access

routine. The data gateway also
handles all protocol conversions |
and message format translations |

between incoming message formats
and protocols and outgoing, pro-
prietary client-server protocols
and message formats.

Differences in the query lan-
guages, data types, error messages,
and system catalog structures used
by underlying data managers are
all, therefore, hidden from client
applications. No modification of
client-application or DBMS code is.
necessary to ensure access to data
in radically different data sources.

All Ingres Release 6 products
use a common protocol to commu-
nicate with each other. This proto-
col, the Global Communications
Architecture (GCA), is based on
the International Standards Orga-
nization (ISO) Remote Data Ac-
cess (RDA) specification, which
defines how client applications can
access remote databases. Ingres
application developers use GCA
without necessarily knowing about
it, since it is automatically embed-
ded into all Ingres applications at
compile time. Once an application
is built, it can “talk” to all other
Ingres products and to any other
DBMS that understands GCA. As
RDA gains more commercial ad-
herents, the developers and users
of database systems will indeed
have a wider range of SQL engines
and tools to choose from. GCA
works transparently on top of
industry-standard OSI communi-
cations protocols such as TCP/IP,
SNA, and DECnet.

Figure 2 — Open SQL is a single query language that applications may use 10 access relational, non-relational, or file-system data With Open
Data Access, user applications have a consistent interface 1o varied data managers. Applications use Open SQL and are returned data in
common data types. If an error occurs, a single error set ks handled. Client-server communications are enabled by a common protocol, GCA

quire today—location transpar-
ency is required as well. Not only
should client applications be able
to access information in multiple
types of data sources, but they
should also be able to access
information in different locations
without the applications them-
selves having to be modified. Data
should be able to move between
data sources—that is, be down-

loaded from one type of database
to another—without requiring that
client applications be modiﬂod.

In order to accomplish these
goals, RTI's Open Data Access
solution implements three addi-
tional components: a GCA name
server, a GCA communications
server, and an Open SQL/GCA-
based distributed data manager
(see Figure 3).

The GCA name server provides
database location transparency for
user applications: a user applica-
tion specifies the database name it
wants to open, and the name server
maps that name to the process ID
of the Ingres data manager, data
gateway, or distributed data man-
ager responsible for managing the
database named. If the target
database is remote, the name serv-
er works with the GCA communi-
cations server to connect to the
remote database server.

The GCA communications serv-

attaches and sends the message to
the destination Ingres or foreign
data manager (through an Ingres
gateway). The communications
server is an independent, multi-
threaded process that routes Open
SQL requests from multiple local
clients to multiple remote servers
using multiple communications
protocols, and concurrently pro-
cesses requests coming in from
multiple remote clients to multiple
local data managers. It is based on
the upper four layers of the OSI
reference model and is both net-
work- and machine-independent.

re truly portable DBMS
applications possible? This
question is being asked with
increasing frequency by informa-
tion management professionals.
Just a few years ago, the answer to
it would have been distinctly non-
committal. Today, the situation
has markedly improved.
Challenges lie ahead,
not the least of which is the need
for DBMS companies to

RDA, and OSI standards

W—- and

never be rewritten to comply with
new standards, so non-relational
gateways will probably never
disappear.

The good news is that compan-
ies are cooperating. Standards bod-
ies such as the Open Software
Foundation and ISO are studying
database interoperability issues,
customers are driving DBMS ven-
dors toward solutions, and real
products that address many of the
technical issues are begmning to

portable, transparent DBMS ap-
plications looks very bright. e

Mitch Bishop is director of mar-
keting for UNIX-based INGRES
products at Relational Technol-
ogy Inc. Previously, he was direc-
tor of operating systems develop-
ment at Altos Computers.

Eric Wasiolek is RTI's manager of
distributed INGRES product mar-
keting, with responsibility for GCA
products as well as
for the INGRES/STAR heterogen-
eous distributed data manager.

Acknowledgement

Dave Simorson of RTT is the orginal architect of
INGRES Open Data Access.

Figure 3 — mmommmmwmsmmwmm-mm a communications server, and an Open
SOL/GCA-based distributed data manager, The GCA name server implements a local database location service. Used in combination with the

communications server, It can also provide transparent access 1o remote
manager allows a single query access 10 information in many types of datal

data. The Open SQL. GCA-based distributed data
and file systems in multiple locations on a network,

Reprinted with permission from UNIX REVIEW

© 1990 MILLER FREEMAN PUBLICATIONS.

MNA-141U-001

