Coexistence Strategies

Integrating Existing Systems with
Open Systems Technologies

By Eric Wasiolek

ORACLE’

Contents

Preface
The Coexistence Problem
Introduction
What is a Coexistence Solution?
Benefits of Coexistence
Proprietary Systems
UNIX and Open Systems
Approaches to a Coexistence Solution
Upload /Download
Application Portability
Client-Server Interoperability
Open Gateways
Cooperative Server Databases
Oracle's Coexistence Solution 11
Upload /Download with SQL*Loader 11
The Portability of Oracle Applications 11
Oracle Client-Server Interoperability 13
Oracle Open Gateways 14
Oracle Cooperative Server Database 17
Advanced Oracle7 Coexistence Features 18

NGB WNNN -

Snapshots 18
Remote Procedures 19
Remote Triggers 19
Replicate Copies 19
Summary 20

Copyright ® 199-2 Oracle Corporation, Redwood Shores, California

All rights reserved. Printed in the US.A.

Restricted Rights Legend

Use, duplication, or disclosure is subject to restrictions stated in your contract with Oracle Corporation,

Use, duplication, or disclosure by the Government is subject to restrictions for commerdal computer software and shall be
deemed to be Restricted Rights under Federal Law.

The information in this document is subject to change without notice. Oracle Corporation does not warrant that this document
1 error-free. UNIX Marketing values your comments and opinions regarding materials produced by the UNIX Marketing
group. Please forward thoses comments to Eric Wasiolek.

ORACLE, CASE"Dictionary, Easy*SQL, Pro*ADA,Pro*C, Pro"COBOL, Pro*Fortran, Pro*Pascal, SQL*Calc, SQL*Conn
SQL*Forms, SQL*Menu, SQL*Net, SQL*Plus, SQL*QMX, SQL*Report, SQL*ReportWriter, CASE*Designer, CASE*Generator,
Orade“Graphics, Orade Core Manufacturing, Oracle Financials, Oracle General Ledger, Oracle Purchasing, Oracle Payables,
Oradle Assets, Oracle Receivables, Oracle Revenue Accounting, Oracle Inventory, Oracle Personnel, Orade Alert, Oracle Bill of
Materials, Oracle Work in Process, Oracle Master Scheduling, Orade MRP, Oracle Quality, Oracle Capadity, Oracle Engineer-
ing, Oracle Snapshot, Oracle Field Service, Oracle Projects, Oracle Contracts, Oracle Fadilities, Oracle*Mail, PL/SQL,
SQL'DBA, and SQL*TextRetrieval are registered trademarks of Oracle Corporation.

UNIX is a registered trademark of AT&T. XENIX is a registered trademark of Microsoft Corporation. DEC, DECnet, RMS,
VAX, and VMS are trademarks of Digital Equipment Corporaton. All other names and products appearing in this paper are
trademarks of their respective companies.

= The Coexistence Problem

Many organizations are interested in moving to
open systems, particularly UNIX systems,
because of their excellent price/performance. At
the same time, these organizations have substan-
tial investments in proprietary systems which
they want to maintain. Large volumes of data
and many applications still reside on these
systems, and a significant investment in MIS staff
training has been made. The challenge for many
organizations, is to forge a strategy which will
allow them to take advantage of new, open
systems technology, without losing their invest-
ment in proprietary systems. They must forge a
strategy that allows both their proprietary
systems and new open systems to work together
and to be fully utilized. Such a strategy is called
“co-existence.” This strategy must be imple-
mented with little or no disruption to the existing
enterprise.

This paper will examine the issue of coexistence

in today’s organization:

* What is a consistency solution?

» What benefits does a consistency solution offer?

* What is the nature of proprietary and open
systems?

* What is required to integrate proprietary and
open systems?

* What products does Oracle offer to imple-
ment a coexistence solution?

Introduction

= What is a Coexistence Solution?

A coexistence solution creates a computing
environment where open systems may work in
conjunction with proprietary systems. Various
approaches may be used to allow open systems,
to work in conjunction with existing applica-
tions, data, and computers. New fourth genera-
tion language applications development tools
can be used to quickly build applications that
work in all computer environments, using the
graphical user interfaces and existing databases
in those environments. Systems can be net-
worked together to share data and applications.
Existing applications needn’t be discarded;
rather, they can be used to access data in new
relational databases that are installed in the
environment. A coexistence solution provides
the best of both worlds: using new open system
technology in conjunction with existing applica-
tions, systems, and databases.

= Benefits of Coexistence
Coexistence strategy allows you to:

* Fully utilize your existing investment in
proprietary systems.

* Use newer and cheaper technology and
reduce the total cost of your computing
environment.

* Have more flexibility in choosing future
hardware and software purchases.

* Easier to accommodate organizationa change.

Protecting Your Existing Investment

A coexistence solution allows an organization to
continue to use existing applications and
databases on proprietary systems in concert
with newly developed applications and data-
bases on open systems. An MIS staff is able to
continue to use their expertise on proprietary
systems, and gradually gain expertise on open
systems technology.

FIGURE 1

A Coeuwstence Solution s one where multiple dverse
systems work logether to provide users, developers, and administralors a Cooperative computing environment,

UNIX

RAMS Oracle

Systems, applications, and database management

Use Newer and Cheaper Technology
A coexistence strategy allows new open systems

to be purchased, along with applications and data-
bases that run on these systems. Moving to open
systems means the ability to take advantage of
newer and cheaper technology. Because similar
open systems are offered by many vendors, the
multivendor competition drives prices down.

By being able to incorporate the less expensive
open systems into an information management
solution, the total cost of the solution decreases.
For example, an organization may currently run
small departmental applications on the main-
frame, where processing time is expensive. By
acquiring and connecting open systems to the
mainframe, those same applications could be
offloaded to run on workstations.

Flexibility of Choice

Coexistence allows more flexibility in choosing the
best technology to fit the information system
requirement. When users have a choice, their
applications requirements are not constrained by
the technology. Instead, they may define what
type of system is needed to run their application,
and then the system can be selected to meet that
requirement. For example, the inventory manage-
ment division of a manufacturing organization
may want to display multiple windows with color
graphs of inventory levels during the manufactur-
ing process, but the current inventory system in
the data center supports only block-mode termi-
nals. A flexible solution would be one where the
manufacturing group may purchase a UNIX work-
station, with a colorful graphical user interface,
connect this to the mainframe, and have the work-
slabondxsﬁaymbardmtfomﬁtedatastoredon

the mainframe. In this case, technology meets the
user’s requirements. Data is located on the most
appropriate platform regardless of where the
application is running, and the end user selects the
most suitable interface.

Accommodating Organizational Change

As organizations grow and change, it is impera-
tive to be able to grow and change the software
and hardware configuration of the computer
environment. When major organizational
changes occur, such as the acquisition of another
organization, different technologies can be
introduced to the corporate information system
very quickly. Newly acquired systems will
seldom be the same as existing systems. Access
to data and applications will need to be accom-
modated with as little disruption as possible. A
coexistence strategy allows existing and ac-
quired systems to work together effectively.

We will now briefly review the different nature

-of open and proprietary systems, which a

coexistence solution integrates.
= Proprietary Systems

‘Proprietary’ systems are systems where the
hardware, operating system, and system soft-
ware, all come from one vendor. These systems
are optimized to solve certain types of applica-
tions like computationally intensive tasks, or
handling many simultaneous transactions.

Because proprietary system hardware and
software come from a single vendor it is difficult
to port applications between these systems and
other systems. Itis difficult to share data with
other systems.

In many respects, the short-comings of propri-
etary systems outweigh the benefits. This fact
poses a strong argument to move information
processing solutions towards open systems.
Nonetheless, proprietary systems are still
excellent at processing certain types of tasks,
and the investment in them requires that they
continue to be used as a part of the overall
solution.

™ UNIX and Open Systems

Open systems, in contrast, are systems based
upon intermational standards where the compo-
nents may be provided by different vendors.

Open systems are ones which have: application
portability, scalability, interoperability, and are
based on international standards.

Application Portability

On an open system such as UNIX it is relatively
easy to run the same application on computers
provided by different vendors, with little or no
modification to the code. An application can be
developed on a system of one type, say an
system from by Hewlett-Packard, and runon a
system of another type, say an NCR tower.
Because both systems run UNIX, the application
execution environment between the two systems
is similar enough that few or no changes to the
application need be made for it to run in either
environment.

Scalability

Open systems allow the same application to run
on systems of different sizes, potentially from
different vendors, with little or no modification.
By “different size' systems is meant systems with
different architectures, different numbers of
CPU’s, amounts of memory, and disk space.
This feature of open system software is called
“scalability.” As an example, the UNIX operating
System can run on machines as small as PCs and
workstations, and as large as mainframes, and
supercomputers. (See Figure 2)

Interoperability

Interoperability’ means that one application can
easily exchange information with another
application. The two applications could be on
the same or different computers. This ‘exchange’
of information allows each system to use the
fadilities of the other system, to cooperatively
process a task.

Standards

Standards specify interfaces that allow

nents of systems provided by different vendors
to interoperate. Standards thereby allow
customers to select components of their systems
from different vendors, and yet have those
systems work together.

The prime example of an ‘open system’ is UNIX.
With UNIX, the same operating system software
Tuns on a variety of hardware architectures from
a variety of vendors. Because only 10% of the
UNIX operating system kernal is written in
machine language [assembler], the operating
system is highly portable across hardware
architectures. The remaining 90% of the UNIX
operating system is written in the highly por-
table third generation language C. For this
reason, UNIX is found on the greatest variety of
hardware architectures of any one operating
system. This fact gives UNIX a tremendous
advantage: it allows applications to run on a
large variety of hardware architectures with
little or no modification.

Workstabon Super

large as mainframes.

Mini Mainframe

FAGURE 2 UNIXsawﬂmopmmmhmmid\mmmqwmumdn?c'smn

Approaches to a

Coexistence Solution

In this section, we will discuss various a

to implementing a coexistence solution. The
approaches discussed may be used together in
any combination to yield a co-existence solution.
There are five major approaches to data and
application sharing:

* Upload/Download

Application Portability

Client-Server Interoperability

Open Gateways

* Cooperative Server Database

= Upload/Download

On the simplest level, proprietary and open
systems should be able to share data through an
upload /download procedure. Specified subsets
of data should be able to be extracted from one
database and loaded into the database of
another system. In this way data may be
exchanged between open and proprietary
systems. For example, an organization may
have a wealth of data stored in VSAM filesona
mainframe, and may want to offload some
portion of that data into a relational database on
a UNIX system. In this way, both the main-
frame and the UNIX systems may be used for
data processing.

Tools should be available to extract the propri-
etary data into an intermediary text format, and
then download the text representation into
tables of a relational database. Conversely, data
should be able to be discretely extracted from
the relational tables and uploaded into the file
format of the proprietary system.

Mainframe

AGURE 3 Upload/Download allows systems of
different types and sizes to share inlormation through
periodic manual transfer,

= Application Portability

A second approach is to develop applications
that can run on both open and proprietary
systems. By deploying the same applications
users can easily switch between systems without
needing to be retrained. Common applications
in both environments creates a unified comput-
ing environment for users.

Different computer systems not only run

- different operating systems, but they also use

different graphical user interfaces, and different
data management systems. Therefore, for
applications to be portable in mixed machine
environments, applications development tools
must be available to allow applications to be
written once, and without modification, be able
to run across different operating systems, to use
the user interface native to a particular operating
system, and to access data in different data

management systems.

Portability Across Graphical User Interfaces

Users will want to run the application under a
user interface that is familiar to them. For
example, if an application is developed and run
on a VMS system, as a character input-output
application, and then ported to a MacIntosh, the
Maclntosh users will not be satisfied to run the
application on their Mac as a character input-
output application. Mac users will want to be
able to utilize the MAC user interface with
which they are familiar.

Developers must have tools which allow them
to re-execute their same application under
different user interfaces, without having to
modify their source code.

This sort of portability is possible, as long as the
application makes calls to a layer of software
which in turn calls the graphical user interface,
i.e., the application does not call the user inter-
face directly. In this manner, the application is
not tied to a particular graphical user interface,
but rather can merely be recompiled or re-
executed to use a new graphical user interface.

Portability Across Data Management Systems

Once an application is moved to a new operat-
ing environment, it may be that the data man-
agement system in that environment is different
than the data management system the applica-
tion originally used.

To make it easy to run the same application
against different data management systems,
tools are required that allow applications to be
portable across data sources as well. Consider
an employee resource application that runs on a
VMS system, using an RMS file system. Sup-
pose that a new division wants to run the same
application, but wants to store the employee
records in a relational database on a UNIX
system. The task, therefore, would involve not
only porting the employee resource application
from VMS to UNIX, i.e., across operating
systems, but also from an RMS data interface to
a relational database interface, i.e., across data
management systems. Portability across data
management systems requires that the
application’s interface to the data source be
consistent.

In summary, one way to unify users of diverse
computers is to provide the same applications to
these users regardless of their computing
environment. To be able to do that efficiently,
applications development tools must be avail-
able that allow applications to be developed
once, and then merely recompiled or re-ex-
ecuted to run on a new operating system, a
different user interface, accessing a different
data management system.

™ Client-Server Interoperability

A third approach to coexistence is to connect
diverse systems together on a network, and
utilize software that allows applications on one
system to access data on another system over
the network. This approach allows diverse
Systems to work together to cooperatively process
tasks for users. Certain tasks, like application
processing, could be offloaded from
overburdened mainframes locating the applica-
tion on machines which have sophisticated user
interfaces.

Client-server computing is a key approach to co-
existence. The client may be located on an open
system and the server on a proprietary system,
or conversely. This allows the two systems to
cooperate to solve a common task. In this way
the open system and proprietary system are
both fully utilized, and hence, co-exist.

Mainframe

FAGURE4 4 Ciient-Server amrangement separates
Mpmhglmmmm PCsor
syslems with sophisticated user interfaces can be used for
MM.MquMWM
wmmumbr&hpm

Client-Server Over Heterogeneous Networks

Because multiple protocols exist in a mixed
machine environment, it is important that the
client and the server be able to communicate
over any type of network. This is enabled by
providing the client and the server a network-
independent interface to the network. This
interface should be the same to the client or the
server regardless of the underlying protocol, and
only is internally written to a specific protocol.

Client-Server Over Multi-protocol Networks

In some cases, clients will be located on different
types of networks than the database servers.

Special networking software is required to allow
clients and servers to exchange messages over
such multi-protocol networks.

As an example, (See Figure 5) consider a client
application on a UNIX system connected to a
network running the TCP/IP protocol which
needs to exchange messages with a server appli-
cationona MVSs connected to an SNA
network, running the LU6.2 protocol. Further
suppose that the Ethernet network and the SNA
network are connected through a gateway. For
the client and server to communicate, some
service, which we will call the ‘multi-protocol
interchange’ needs to translate the client message
in the TCP/IP packet format to a client message
in the SNA LU6.2 data stream format, in order
for the server to be able to accept the message. In
response, the ‘multi-protocol interchange’ service
needs to translate the server response

from a SNA data stream format to a TCP/IP
packet message format in order to be read by the
client application.

= Open Gateways

Another approach is to develop new applications
that are able to access existing data in a database on
the proprietary system. For example, a large amount
of data may reside in VSAM files on a mainframe.
This approach allows new applications to be devel-
oped, with fourth generation language technology,
and have those applications access data in the VSAM
files. -

The ‘Open Gateways' approach has many advantages:

¢ Data is left where it is — it is not necessary to
move any data from the existing data manage-
ment system. The familiar data management
system may continue to be used.

* Existing applications continue to run against
the database - existing applications, in our
example, VSAM applications, continue to run
against the database, even while new applica-
tions are being developed. This way users are
not disrupted from their normal tasks.

¢ New fourth generation language applications
can access the existing data - great productivity
gains can be achieved by utilizing 4GL technol-
ogy to develop new applications against the
existing data.

UNIX

TCPAP

FIGURE 5

Client-Server operation over a mult-protocol gateway for cients and servers 1o intaroperate.

* Applications can reside on a different
system than the database - the new applica-
tions can be developed and deployed on a
different system than where the data resides.
4GL applications may be deployed on a UNIX
System connected over a network to the
mainframe. In this way newly acquired open
Systems may cooperatively process tasks with
existing proprietary systems.

OpmGa&ewaysacc&se)dsﬁngdah,and existing

applications, like VSAM applications, to access

data in relational databases. There are four types
of Open Gateways:

* Gateways that allow SQL applications to
access data in various vendors’ relational
databases and in non-relational databases;

* Gateways that allow existing applications,
like VSAM applications, to access relational
database data;

* Transparent Gateway Toolkits that allow a
customer to build their own gateway, and

* Procedural Gateways that provide access to
data through a procedural interface.

Gateway Type 1 - SQL Access to Heterogeneous
Data

Often, there is much existing data on the propri-
etary system that users want to access from a
new application. For example, an organization
may have-much data stored in VSAM files on an
IBM mainframe, yet want users located on UNIX
systems to be able to access that information
through SQL-based applications. By using a
‘client-server’ arrangement, the organization can

run its applications on UNIX clients and have
these clients still access data on the IBM main-
frame. This type of access is technically pos-
sible, but requires special technology known as
an ‘Open Gateway.’

An Open Gateway translates SQL calls into the
native file input-output calls of the target data
source. For example, an SQL statement that
selects VSAM data is translated into a specific
set of VSAM file input-output calls that select
the desired items from the VSAM files.
Gateways are applications that allow client
applications to access data in a variety of
relational and non-relational data sources.

Gateway Type 2 - Allowing Existing Applications
lo Access New [Relational] Data

The second problem an Open Gateway solves is
to allow existing applications, such as VSAM
applications, to access data in relational databases.
MIS can maintain its existing investment in
proprietary applications, and simply use these
applications to access data in relational databases
on open systems. This allows existing applica-
tions to access the same data accessed by new
applications built with 4GL technology. This is
a form of coexistence where the dient remains
on the proprietary system, but the data is stored
On an open system.

Open Gateway technology is again required so
that VSAM file input-output calls are translated
into the semantically equivalent SQL calls to
select the target data set from the relational
tables.

UNIX

MVS

soL = Data Gateway

'rotocol

FIGURE 6 Access o existing data from standard SQL applications through Open Gateways,

Gateway Type 3 - Open Gateway Toolkits

Because there is such a diversity of data man-
agement systems, it is important to have tech-
nology that allows an organization to build its
own gateway to proprietary file systems and data
management systems. The technology must
minimize the amount of needed programming
while allowing adequate access to the data.

Gateway Type 4 - Access to Existing Procedural
Data

Not all data is stored in databases. A large
amount of the world’s data is stored in applica-
tions that have a procedural interface. Data is
also stored in databases which have procedural
interfaces, like transaction processing systems
like CICS, IMS DC, TUXEDO, and DB2 Stored
Plans. A successful coexistence strategy allows
access to data through a procedural interface.
This is required whether the access is to the an
existing transaction processing system or to user
applications, e.g., C routines.

= Cooperative Server Database

A final approach to ‘coexistence’ may be called
‘Cooperative Server Database.’

A Cooperative Server Database allows multiple
data sources, say those in proprietary file
structures and those in relational databases to be
logically combined. A Cooperative Server
Database allows a single user request to access
data in multiple databases simultaneously.
These databases may be located on both propri-
etary and open systems.

The advantages to this approach are:

¢ Data may be located on the machine where it
is most frequently used - now users do not
need to be connected over remote communica-
tions link to a centralized databank on a main-
frame. Instead, data can be moved to the systems
where users most frequently access it, and users
can still maintain transparent access to all data.

¢ Data may be redistributed without affecting
user’s access - as an organization’s makeup
changes, data needs to be re-distributed to
new sites: offloaded from mainframes or
transferred to newly acquired systems. A Co-
operative Server Database insures that wher-
ever the data is moved to users continue to
have transparent access to it, as if it resided on
their local system.

¢ DBMSs may be tied together into a coopera-
tive computing environment - information
residing at multiple sites can be automatically
correlated and processed as easily as if it
resided at a single site. Multiple diverse
systems are used simultaneously to process
user requests.

There are two types of Cooperative Server Data-

bases, homogeneous and heterogeneous .

Homogeneous Cooperative Server Database

A "homogeneous Cooperative Server Database’ is
a logical database composed of multiple databases
all of the same type: all instances of the ORACLE
RDBMS. The homogeneous ive Server
data manager should allow a single SQL request to
access data in both databases simultaneously. With

AGURE 7 A H

MPE/XL

10

the aid of technology called a ‘distributed query
optimizer’ the access to those multiple databases
can be optimized. The ‘distributed query optimizer
determines the best order in which t send the
multiple queries, and the best computer sites at
which to join the data. Furthermore, a i
called 'automatic two-phase commit’ allows data
at multiple computer sites, potentially both
proprietary and open systems, to be simulta-
neously updated. In the first ‘phase’ the Coopera-
tive Server data manager checks to see whether all
participating databases are ready to be updated. If
they all respond that they are, the Cooperative Server
data manager proceeds to the second phase and
commits the data at multiple sites. If one or more
databases are not ready to be updated, the Coop-
erative Server data manager aborts the transaction.

A Heterogeneous Cooperative Server Database

A "heterogeneous Cooperative Server Database’
is a logical database composed of data sources of
different types. For example, a logical database
composed of VSAM files on MVS and an Oracle
relational database on UNIX would be a ‘hetero-
geneous Cooperative Server Database.” Heteroge-
neous Cooperative Server Databases are important
for ‘co-existence’ because they allow existing non-
relational data sources to be logically combined
with the new relational databases typically found
on open systems.

Multiple approaches were discussed which may
be used to allow data and applications to be
shared across open and proprietary systems.

The table below summarizes these approaches

to a coexistence strategy:
Upload/Download Manual transfer of data
Application Portabiity | Across operating systems
Graphical user interfaces
Data management systems
Chient-Server Across heterogensous networks
Across an intemetwork
Open Galeways New applications access
exising data
Access 1o procedural servers
relational data
Cooperative Server Homogeneous
Database Helerogeneous

FAGURE 9 Summary of Coexistence Approaches

FIGURE 8 A Helerogenous Cooperative Server Database is a logical database composed of databases of different types.

1

ORACLE'S Coexistence

Solution

In the last section, we discussed the require-
ments and various types of coexistence. It was
stated that a coexistence solution:

* should provide the ability to upload and
download data between disparate systems,

* the solution should allow applications to be
easily ported across operating systems,
graphical user interfaces, and data manage-
ment systems,

« it should allow applications to be deployed in
a client-server configuration for new applica-
tions to access existing data, and existing
applications to access new relational data,

* data should be accessible through a proce-
dural interface and finally

* a coexistence solution should allow a Coop-
erative Server Database capability to logically
combine data sources at different sites.

In this section the Oracle products that make

these coexistence solutions possible will be
discussed.

This section will discuss the following Oracle
products and product concepts:

* SQL*Loader

« Oracle Application Portability

* Oracle Client-Server: SQL*Net

* Oracle Open Gateways

+ Oracle Cooperative Server Database
This section will explain how each of these

Oracle products and capabilities help implement
coexistence solutions.

= Upload/Download with SQL*Loader

Oracle can share data with any system through
an upload /download scenario. This means that
data can be extracted from the desired data
source into an intermediary text format, and
then loaded into Oracle relational database
tables. This data extract and download capability
is supported by a product called ‘SQL*Loader’
from the following databases to the Oracle
database: DB2, SQL/DS, IMS, ADABAS,

DATACOM, IDMS, M204, VSAM, Rdb, RMS,
INGRES, Informix, TANDEM, and
TURBOIMAGE, and several others.

= The Portability of Oracle Applications

Applications should be able to be written once,
and without modification, run on different
operating systems, graphical user interfaces, and
data management systems. Oracle applications
development tools meet this requirement better
than any toolset in the industry.

Oracle applications development tools are
supported on over 80 different operating system
environments, including most proprietary as
well as UNIX platforms. Applications using
Oracle can be executed without code modifica-
tions on any of the 80 supported operating
system environments. By implementing the
same software solutions across open and
proprietary systems, these systems are unified
for users, applications developers, and system
managers Both the applications which are built
and the application development tools, as well
as the system administration tools are portable
across proprietary and open operating systems.

This portability for Oracle products and for
applications written using Oracle application
development tools extends to independence across
operating systems, graphical user interfaces, and
many different data management systems.

Portability Across Graphical User Interfaces

Orade provides technology called the ‘Adaptable
User Interface’ to allow portability across graphi-
cal user interfaces. For example, an application
can be developed once, then simply re-executed
using a different runtime to take advantage of a
different graphical user interface. Orade supports
Motif and OpenLook in the UNIX domain, as
well as the following graphical user interfaces
on non-UNIX systems: Presentation Manager,
Windows 3.0, Macintosh, DECwindows, charac-
ter mode terminals, and block mode terminals.

Support for these interfaces is provided by the
Oracle Adaptable User Interface (AUI) technol-
ogy (see Figure 10), which maps a set of interface
functionality to each GUIL. Applications built

12

!

Oracle
Application

Oracle Adaptable User Interface

OSF

= S

Open DEC tﬁn«'
Look Nndoml Manager

I |

Mainframe Misc. UNIX UNIX

FIGURE 10 Oracle applications can be re-executad with no
operating system. Through the *Adaptable User

code rewriting to take advantage of the user inlerface native to an
W’MMnmmmwﬁdwhhm;

VMS 0S/2 MS-DOS Macintosh

using Oracle tools maps those calls into the “look
and feel” of a particular GUL. For example, a
menu call made by a SQL*Forms application is
translated into the appropriate scroll bar of the
GUI being used. Oracle applications will therefore
have the native “look and feel” of a workstation’s
GUL

Oracle’s Adaptable User Interface will allow
users to keep pace with advances in GUI tech-
nology. As new GUIs and advanced features of
existing GUIs appear on the market, they can be
incorporated into the AUI, allowing Oracle
applications to take advantage of them.

Portability Across Data Management Systems

With Oracle, applications may be developed to
access data in different data sources with little or
no modification. An application that uses SQL
to access data in an Oracle database on a 1JNIX
system, can be ported to a VAX/VMS system to
access information in RMS files, through SQL as
well. Oracle offers portability across data
managers by providing a single interface,
namely SQL, to different data managers. The
technology that enables this is Oracle’s data
gateway products, called SQL*Connect. The
SQL*Connect product accepts the SQL call from
the application, and then translates that call into

UNIX

FIGURE 11
System 10 a propnatary system, and be recompiled 1o run on the
through Oracle's SQL*Connect technology.

Oradle supports portabuly across database fypes. The same Oracle

VMS

lppliaﬁoncnnbomovodlmmomn
proprietary system and access tha non-Oracle database

13

the appropriate calls of the target data manager.
SQL*Connect works in conjunction with an
Oracle RDBMS. For example, SQL*Connect to
RMS accepts an SQL statement from an Oracle
application, it then translates this statement into
the semantically equivalent set of RMS input-
output file calls, to select the appropriate data
set from RMS files.

- Oradeaiaumlmmty

The ORACLE RDBMS uses a client-server
architecture. Oracle’s data manager is imple-
mented as a separate process from any client
applications supplied by Oracle or built using
Oradle tools. This separation of the client applica-
tion process from the data manager [server]
process allows Orade applications and databases
to easily reside on different machines connected
on a network.

Oracle’s client-server computing solution works
over many different types of networks, using
different protocols. Oracle’s solution also works
in multi-protocol environments.

SQL"Net - Client-Server Over Heterogeneous
Networks

SQL*Net is the Oracle product that enables
applications and data management systems to
cooperatively process tasks in a networked
environment. It allows Oracle client applica-
tions to reside on one computer while accessing
data from a database on another computer.

Protocol Independence

SQL*Net is implemented in a layered-fashion, so
that the Oracle client application or data man-
ager is completely shielded from dealing with
any of the details of the network. The advantage
of this implementation is that applications can
be developed to run in networked environments
as easily as if they were being developed on a
single system.

Machine Independence

SQL*Net also provides machine independence.
Different computers represent data differently.
An IBM system represents text data using
EBCDIC character codes. UNIX systems use
ASCII. The byte orders of data on different
computers is different. The floating point
formats are different. A problem arises when a
client application on a computer that uses one
data format accesses information from a data
server on a computer that uses a different
format. SQL*Net automatically translates data
from its source to its destination format. For
example, developers of applications needn’t be
concerned with translating data format differ-
ences in a networked environment; this is done
automatically by the SQL*Net product making
application development much easier.

UNIX

AGURE 12 SQL"Net s the Oracle product which allows Oracle clients and servers to communicate over a network.

14

UNIX

MVS

cale over two or more different networks.,

FAGURE 13 so:.wu'.wapmwwmnmommmmo«mmmmdumubmw

Running Client- Server Over Multi-protocol
Networks

Finally, it may be the case that the dlient applica-
tion and the data server are located on networks
of different types. For example, a UNIX work-
station on a TCP/IP network may need to access
data in an Oracle database on an IBM main-
frame, where the mainframe is connected to an
SNA LU6.2 network. In order for the client to be
able to send an SQL message to the data server,
the SQL message must be translated from a
TCP/IP packet format to an LU6.2 message
format [data stream), and conversely, when the
requested data is returned. Itis SQL*Net V2's
multi-protocol interchange capability that
performs this translation.

= Oracle Open Gateways

Oradle supports a comprehensive Open Gateway
strategy. Oracle applications are able to access
data in both other relational databases and in
non-relational data sources. A strategy is
provided to allow customers to build gateways
to proprietary file systems and databases, and to
access data through a procedural interface. We
will now discuss Orade’s Open Gateway strategy.

SQL*Connect - New Relational Applications
Accessing Existing Data

A good coexistence strategy allows new SQL-
based fourth generation language applications
on open systems to be able to access existing
data on proprietary systems. Such access is
enabled through Oracle’s SQL*Connect prod-
ucts. What SQL*Connect does is translate SQL

UNIX

FIGURE 14 SQL"Connectis the Oradle product which allows Oracle SQL applications to access data in non-Oracle

dala sources.

15

requests into the language of the target data
manager. This provides Oracle SQL access to
non-Oracle relational databases and even to
non-relational data sources.

All Oracle applications, or applications devel-
oped using Oracle’s fourth generation language
tools are designed to work with the
SQL*Connect products. SQL*Connect products
are implemented as a server process separate
from client application processes. Hence, any
Orade dient application can work with any Oracle
SQL*Connect product Access to relational and
non-relational databases is provided by
SQL*Connect products as indicated in Figure 15.

Operating | Relational |Non-Relational
System

MVS DB2, SQUDS [IMS, VSAM, ADABAS, IDMS!
VMS Rdb, Ingres |RMS

MPE/XL Turbo Image

ICL VME IDMSX, ISAM
Tandem Non-stop SQL

DG AOS INFOS I

Wang VS) DMS

Seimons SESAM, ADABAS
BS2000

AGURE 15 Summary of SQL"Connect Gateways

For availability of each of these Gateways, see
your Oracle Sales Representative.

The Oracle Transparent Gateway Developers
Kit

Oradle's objective is to provide direct access to 90% of
corporate data through its SQL*Connect products.
However, some data resides in proprietary files
systems for which no SQL*Connect product exists.
Orade will provide its SQL*Con-nect technology in a
kit, to allow customers to build their own SQL-
based gateway. Whether data is stored in a rela-
tional database, in a record-based data manager, or
a hierarchical or network database, the SQL*Con-
nect technology can be used to build a data gateway
which allows SQL access to the target data manager.

The Oracle Procedural Gateway

A large portion of the world's data is accessed
directly by an application procedure. To this end,
Oracle will provide the ability to build a remote
procedure call (RPC) interface to existing transac-
tion processing systems and applications that have
a procedural interface. These include such systems
as: TUXEDO, CICS, UTM, DB2 stored plans, IMS-
DC transactions, and other user code and programs.
In this way, existing transaction processing monitors,
like CICS, can be used directly by Oracle fourth
generation applications.

Oracle “Embedded SQL Products - Allowing
Existing Applications to Access New Relational
Data

Orade provides two strategies by which existing
applications can access new Oracle RDBMS. First,
existing applications can be partially rewritten, by
embedding SQL calls within them, to allow access to

VMS

)

Oracle o
roBms [SOUNet

provided by Oracle.

FIGURE 16 DauwMahmMnumnbammmMnMthMMaMnumr
converts Oracle PL/SQL calls into C routine calls. The procedure server is built through an “open procedura server gateway" kit

UNIX

16

relational databases. Secondly, Oracle will be
providing Open Gateways which actually trans-
late the calls of existing VSAM and DB2 applica-
tions to Oracle SQL calls, so that these applications
¢an access data in Oracle RDBMSs transparently.

Third Generation Pre-compilers

Much application investment has been made in
third generation programs on proprietary systems.
A typical installation will have several years of
COBOL or FORTRAN applications written for
their proprietary platform. Applications develop-
ers may embed SQL statements within the source
Of their third generation language programs to
access data in relational databases. For example,
a organization with a large investment of COBOL
applications on an IBM Mainframe could modify
those applications to embed SQL statements to
access an Oradle relational database on a UNIX
system over SQL*Net. Oracle’s ‘embedded SQL’
products are precompilers that compile the source
of the embedded SQL statements into third
generation language source structures. The source
to the entire third generation program is then
compiled into an executable per usual.

Oracle has ‘embedded SQL’ products for the
following third generation languages:

* Embedded SQL for COBOL

* Embedded SQL for FORTRAN

* Embedded SQL for IBM PL/1

* Embedded SQL for C

* Embedded SQL for ADA

* Embedded SQL for PASCAL

Transparency Products - Allowing Existing
Applications to Access New Relational Data

DB2 Transparency

The second way existing applications may access
new, relational data will be through Orade’s
“transparency’ products. Planned are ‘transpar-
ency’ gateways for DB2 and for VSAM. The DB2
product will allow DB2 applications on JBM
mainframes to access Oracle relational databases,
for example, on UNIX. The Gateway will accept
DBZSQLmMﬁmnaDBzdimtappﬁmﬁon
program and generate the semantically equivalent
Orade SQL statements and pass them to the
Orade server. The Oracle server will process the
SQL request, and return the results to the Gate-
way. The Gateway then will translate the data
typesﬁomOradedahtypsz&dahtypes,
and retum the information in native format to the

requesting application. -

VSAM Transparency

A VSAM transparency product is planned as
well. This product will allow a native VSAM
application to access data in an Oracle database.
The product is a Gateway which translates
VSAM file input-output calls into the semanti-
cally equivalent Oracle SQL statements. This
product will allow the great volume of VSAM
applications to access Oracle databases on MVS,
or UNIX, or other platforms, with no modification.

UNIX

by an Oracle ROBMS

FAGURE 17 VvSam Transparency products translate VSAM input-output calls into SQL statements that are processed

17

=+ ORACLE Cooperative Server
Database

Finally, it was discussed how the ‘Cooperative
Server Database’ approach could be used to
allow multiple systems networked together to
act as a unified data processing system for user
queries and transactions.

ORACLE? allows Cooperative Server Database
to be created to process data in multiple Oracle
and non-Oracle databases.

Oracle Homogeneous Cooperative Server
Database

There are two basic operations performed by
Oracle’s Cooperative Server Database capability:
distributed queries [collecting data from mul-
tiple sites], and distributed updates [updating
data at mulitiple sites].

Distributed Queries

Oracle allows data in databases on different
machines to be effidently collected and correlated
by users through its distributed query capabil-
ity. This distributed query capability allows
multiple machines, for example, UNIX systems
and mainframes, to work together to collect data
from multiple databases for users, creating a
unified data processing environment. In
ORACLE?, Oracle queries execute in the quick-
est possible way due to a distributed query
optimizer.

Distributed Updates

ORACLE? supports distributed updates.
Distributed updates allow user applications to
execute transactions that update data stored on
multiple machines. Users can treat data on
multiple machines as if it resided on a single
system, providing a unified computing environ-

* ment.

ORACLE 7 RDBMS supports a facility called
‘automatic two phase commit,” which automati-
cally insures the integrity of a transaction in a
computer environment even when machines,
networks, or database servers fail. It works by
verifying whether all tables referenced in a
transaction are available to be updated, before it
proceeds with the update. This two phase
verification process is necessary to insure data
integrity should a system, database, or network
crash during the transaction. Additional
facilities are provided to automatically recover
multiple databases into a consistent state, after a
crash has occurred.

Oracle Heterogeneous Cooperative Server
Database

The second type of Cooperative Server Database
discussed was a ‘heterogeneous Cooperative
Server Database;’ one where data is collected
from both Oracle and non-Oracle databases.

The ORACLE7 RDBMS is able to make data
distributed in both Oracle and non-Oracle
databases appear as if it were all stored in a
single database. It does so by the fact that the
Oracle RDBMS is designed to work with the

FIGURE 18 The ORACLE RDEMS Senverallows a single SQL statement to access data in multiple Oracle RDBMSes.

RGURE 19 The ORACLE RDBMS works in conjunction with SQL*Connect to allow Oracle and non-Oradle dalabases to be
accessed by a single SQL query, or updated (V7) by a single transaction.

SQL*Connect gateways to provide “heteroge-
neous Cooperative Server’ data access. For
example, a user on a UNIX system may issue a
query which joins data in a table in an ORACLE
relational database on the UNIX system, and an
RMS file on the VAX.

ORACLE7 Heterogeneous Distributed Updates

ORACLE? supports distributed updates against
heterogeneous databases as well. This means
that users can execute transactions that update
data in existing databases on proprietary
systems in conjunction with Oracle databases on
open systems platforms. Existing and new
Systems cooperate as a single transaction
processing system.

In addition, Oracle offers some advanced
coexistence features provided by ORACLE7
which extend Oracle’s Cooperative Server
Database features even further

Advanced ORACLE7

Coexistence Features

ORACLE7 RDBMS offers a set of new features
that allow a much tighter coexistence strategy.

. Among these are ‘snapshots,” “replicate copies,’

“remote procedures, functions, and packages,’
‘remote triggers,” and ‘remotely triggered
procedures.’

= Snapshots

A “snapshot’ is a copy of data from one system
to another. The copied data may be a selected
subset of data in one or more tables. These
copies of data can be done at different times.
Snapshots are useful to automate the dissemina-
tion of information. What was done manually
with SQL*Loader now can be done automati-
cally with snapshots. As an example, employee
information may need to be periodically down-
loaded from the corporate employee database to
the employee databases stored at each of the
individual factory outlets. In this case a snap-
shot of personnel data about employees may be
selected from each region from the corporate
database on the mainframe and automatically
downloaded into the databases on the remote
systems.

19

=+ Remote Procedures

The ORACLE7 RDBMS allows the creation and
storage of procedures within the database. A
procedure is a set of statements to be executed
according to some procedural logic. Procedures
stored in remote databases may also be called
and executed. For example an application on
one platform, say UNIX, may call a procedure
which is stored in a DBMS on another platform,
say VMS. Not only do procedures provide
cross-operating system procedural access, but
procedures allow Oracle applications to access
other DBMSs with procedural interfaces, or even
non-DBMS applications, with procedural
interfaces.

= Remote Triggers

In Oracle, a “trigger” is a defined action that
takes place when a named field is changed
[updated, deleted, or inserted]. That action may
be a SQL statement or a series of SQL state-
ments executed according to some procedural
logic, i.e., a procedure. In ORACLE?, defined
triggers are stored in the database, as are the
procedures which they may call. When the
action triggered is remote, the trigger is a
‘remote trigger.” Remote triggers may be used
to perform cross system value-based auditing,
enforce complex business rules that involve

implement complex security rules, and auto-
matically make implied changes.

= Replicate Copies

‘Replicate copies’ are entire copies of a table at
one site which is copied to one or more other
sites. These copies of data are ‘synchronous,’
i.e, all data is copied at the same time. With
Oracle, replicate copies are done by creating a
‘trigger” which reproduces changes to the master
copy in each replicated table. The multiple
updates to the slave tables are performed as a
distributed transaction, so that they are pro-
tected by two-phase commit should there be a
failure during the transaction. So, for example,
if a user at the mainframe site updates the
master price table, this price change is simulta-
neously propagated to the price tables of the
databases on UNIX systems in the retail outlets.
This is done by defining a trigger on the price
field of the table in the mainframe database,
such that whenever that field is updated, that
update is propagated to the same field of the
same table in the UNIX databases at each of the
retail outlets. In this way, all ‘copies’ of the
mainframe database table at the UNIX sites are
kept up to date.

Figure 20 summarizes the Oracle products
which implement the various coexistence

databases on open and proprietary platforms, approaches discussed.
Approach ORACLE Product
Upload/Download Manual Data Transfer SQL"Loader
Application Portabiity | Across operating systems All Products
Graphical user interfaces Adaptable User Interface
Data management systems SQL*Connect
Chienl-Server Across heterogeneous networks SQL"Net
Across an intemetwork MuitiProtocol Interchange
Open Galeways New applications access existing data SQL*Connect
Access to procedural servers Open Procedure Galeway
Existing applications access relational data Embedded SQL, Transparency Product
Cooperative Server | Homogeneous ' ORACLE & SQL*Net
Database Heterogeneous ORACLE, SQL"Net, & SQL*Connect

FIGURE 20

In summary, the several distinct advantages of
open systems make it attractive for organiza-
tions to purchase them, and incorporate these
into the existing mix of machines. At the same
time, it is important for these organizations not
to lose their investment of data, applications,
and training in the proprietary minicomputers
and mainframes they already have installed.
The key is to forge a ‘coexistence strategy’ which
allows the proprietary minis and mainframes to
continue to be used in conjunction with the
newer Open systems.

Itis important to understand that a coexistence
strategy is not an all or nothing proposition.
Coexistence may be implemented in different
ways and to different degrees. A good coexist-

ence solution offers flexibility as to how exactly
coexistence is implemented. It may be that
merely periodically transferring data between
the UNIX and proprietary systems is an ad-
equate solution. It may be that offloading
application processing from the mini or main-
frame is what is required. Here, the UNIX
systems may be used for application processing,
while the mainframe retains the data. A dlient-
server solution may be implemented to allow
the UNIX applications to have on-line access to
existing data. Or, more sophisticated solutions
may be implemented that create a ‘Cooperative
Server Database’ between the proprietary and

open systems.

Regardless of the coexistence path chosen, the
overall goal remains the same: continue to use
existing proprietary systems in concert with new
open systems technology. To this end, Oracle
provides a comprehensive product set to
implement flexible coexistence solutions.

