a5

DIS

VORKED & MULTIUSER SYSTEMS

ETEROGENEOUS
UTED
APPLICATIONS

Confused by all the
choices? Here’s an
overview of the
client-server model

to help you get
started

By Eric W, Wasiolek

UNIXWORLD SEPTEMBER 1988

NIX has much of the tech-
nology that sophisticated
business users covet: dis-

tributed processing, net-
worked windowing, network madl, dis-
tributed file services, and mare.

But the commercial market is firmly
entrenched with non-UNIX systems
from IBM, DEC, and Apple. As a re-
sult, it'’s cnitical for commercial UNIX
applications, whether distributed or
otherwise, to share information with
non-UNIX systems.

Fortunately, UNIX applications may
be built to connect to non-UNIX sys-
tems to address corporate America’s
emerging heterogeneous distributed
applications requirements. OEMs,
VARs, and software developers can
use dissimilar systems communica-
tions technology available on the mar-
ket today to turmn standalone applica-
tions into heterogencous distributed
applications.

Actually, UNIX was among the first
operating $ystems to incorporate a
method to build distributed processing
applications. It used Inter-Process
Communications (1PC) pipes to send
data between two processes on the
same system and used BSD sockets to
send data between two processes on
the same or different systems. Only
recently have other operating systems
borrowed this technology —for exam-
ple, named pipes and APPC (which
is IBM’'s Application Program to
Program Communications interface)
in 0S/2.

It was some six years ago that com-
munications vendors extended the
Berkeley socket model to non-UNIX

platforms. The result was that, for the
first time, developers could write ap-
plications that allowed processes on
UNIX systems to communicate with
programs on non-UNIX systems.
Developers, for example, could write
DOS to UNIX, DOS to VMS, or
DOS to UNIX to VMS distributed
applications.

A CHOICE OF INTERFACES
Today, many communications compa-
nies offer network programmatic inter-
faces in non-native environments
(such as Netbios under XENIX or
APPC under VMS). The resuit is that
software vendors have, in most cases,
a choice as to which programmatic in-
terface to build their apphications on.

Often, however, the mer is
confined to the interface available
across certain systems. Despite recent
developments in heterogeneous con-
nectivity t , the BSD socket
model is still available across the
greatest variety of systems. And most |
software vendors continue to build
their heterogencous distributed appli-
cations on faithful BSD sockets.

Today’s UNIX users are faced with
a dilemma. On the one hand, they in-
creasingly enjoy the virtues of desktop
computing with ever-increasing local
processing power, more elegant win-
dowing interfaces, and cheaper RAM
and disk space, On the other hand, the
mainstay of corporate information still
resides on backroom mainframes and
minis to which end users need access
to do their jobs.

One simple answer is to place a
3270 or VT100 terminal on the desk

Perspectives

beside the desktop personal system.
But this is not cost-effective. Of
course, you can buy software to allow
the desktop system to emulate a 3270
or VT100 terminal. But this still ne-
cessitates that the user leam the oper-
ating system and application on the
system where the corporate jewels
reside. The user must also be able
to locate the data on the mainframe
or mini.

A much more sophisticated solution
allows users to run a local application
while accessing remote information.

_This is possible through the familiar
interface of their favorite desktop,
without specifying the location of the
data. The solution is enabled by ex-
tending the distributed processing
model of computing to span dissimilar
systems and by the construction of het-
erogeneous distributed applications.

DISTRIBUTED APPLICATIONS

Distributed applications technology is
founded on the principle of distribut-
ing the processing of the application
across different CPUs, whether they
are on the same (as in multiprocessor
systems) or different systems. This
computing principle enables greater
CPU utilization across machines. With
it, there is less idle CPU time, minimal
network traffic, and each process may
be specifically written to best utilize

the resources of the system on which
it executes.

A distributed application is typically
divided into a client program and a
server program. There may be many
instances of both the client program
and server program on a single net-
work. In most cases, client programs
reside on desktop computers, while
server programs are typically found on
multiprocessing host computers.

The client program accepts user
input, constructs a request message for
server resources, and sends the mes-
sage to the gerver program, which ex-
ecutes the request, and returns the re-
quested information. (See Figure 1.)
The client program displays the infor-
mation to the user.

The communications subsystem
acts as a vehicle to deliver request
messages issued by the client pro-
gram, and to return information sup-
plied by the server program. To the
application, the communications sub-
system is a black box. The application
writes messages to, and reads mes-
sages from, the communications inter-
face, which is its sole interaction with
the mechanism for delivering mes-
sages between dissimilar systems.

However, the method by which the
message is delivered is not irrelevant.
On the contrary, the specific imple-
mentation of the communications sub-

FIGURE 1: Messages are passed between the client and server
programs running on different types of computers running different
operating systems. The messages are passed through a common
communications interface by an underlying intelligent transport
subsystem

Communications
Interface X

[Driver J

[

¥ Transport Subsystem W mﬁ: ’ Transport Subsystem
Network Hardware Physical Link I Network Hardware
—
Computer / Operating System Response Megsage Computer / Operating System
Type A (Data) Type B

UNIXWORLD SEPTEMBER 1988

system directly affects the overall
quality of the resulting distributed
application.

CHOOSING THE
COMMUNICATION METHOD

It is through the communications in-
terface that the client program passes
messages to the server program (and
conversely). Moreover, it is the range
of dissimilar systems across which the
interface is offered that limits the
range of systems across which the ap-
plication may be distributed.

Several network programmatic in-
terfaces are available. These include
BSD Sockets, TLI/TPI, Netbios,
named pipes, CL/1, and APPC. Each
was developed in a different environ-
ment, and each offers connectivity be-
tween a different set of dissimilar
systems.

Netbios is actually a session level
(ISO level 5) interface definition. It lets
you establish a reliable data stream
(virtual circuit) and send packets,
called network control blocks, between
client and server programs across a
network. Netbios is the standard net-
work programming interface in the
DOS world and is also available under
XENIX.

APPC is on the LU6.2 protocol
available on IBM mainframes as a part
of IBM’s Systems Network Architec-
ture (SNA). As mentioned earlier,
APPC is also available on 05/2 PS/2
systems. And some implementations
are available for DEC VAX VMS sys-
tems, providing 0S/2 to VMS to MVS
connectivity.

CL/1 from Network Innovations is a
high-level applications interface that
allows Macintosh applications to ac-
cess a variety of SQL-based databases
and File Transfer Access Method
(FTAM) files located on DEC VAX/
VMS systems,

Named pipes are an extension of the
UNIX IPC mechanism. They are avail-
able under 0S/2's LAN Manager.

Finally, TLI/TPI is AT&T’s UNIX
V.3 programmatic streams interface
and is available on any computer run-
ning UNIX V.3, Although TLI is
increasingly popular as a UNIX distri-
buted applications programming inter-
face, it will not suit heterogeneous
distributed applications until it is avail-
able under DOS, VMS, and 0S/2.

As mentioned, BSD sockets are
UNIX’s first program-to-program com-
munication mechanism. It is available
as a standard part of the kemnel on all
BSD-derived systems, including Sun
0S8, and is also available on DOS,

Perspectives

VMS, UNIX System V, XENIX, and
0S/2.

OTHER METHODS

Also available are higher level net-
work programming interfaces, includ-
ing X.11, Postscript, RPC, XDR, NFS,
RFS, SMB (MS-NET), XENIX-Net,
and LM/X (LAN Manager). These in-
terfaces let you send output to remote
terminals, execute remote commands,

A software developer
converts a standalone
application into

a heterogeneous
distributed application
in stages.

and make remote file system calls.
Each of these interfaces is itself a het-
erogeneous distributed application.
Hence, any application that uses one
of these interfaces is an application
built on top of a heterogeneous distri-
buted application. The result is that
certain applications may be built with
less effort. But they will be limited to
the capabilities of the higher level in-
terface and will be slow relative to
building the same application directly
on sockets, for example.

Unfortunately, no single interface
spans all the systems that can reside
in a large corporation. Hence, the soft-
ware developer must choose between
interfaces or offer multiple versions of
the heterogeneous distributed applica-
tion on different interfaces.

A software developer converts a
standalone application into a heteroge-
neous distributed application in stages.
® Divide the application into two:
(1) a client program that accepts input
from and displays results to the user,
and (2) a server program that accesses
resources on the host.
®m Modularize the client and server
into an operating system interface por-
tion, a communications interface por-
tion, and the program body. By follow-
ing this procedure, you isolate the core
code from the different operating sys-
tems and communications interfaces to
which that code may be ported.
= Establish message communications
between the client and server pro-
cesses on the same machine. You ac-
complish this, for example, by writing
to socket descriptors whose addresses
reside on the same system.

s Move the client or server's execut-
able code to another machine of identi-
cal type; then establish message com-

munications between a client running
on one system across a network link to
a server running on another systenf of
identical type. You do this by reassign-
ing socket descriptors.

At this point, the developer is run-

ning a homogeneous distributed appli-
cation. He or she has, for example, a
client process on one Sun system com-
municating (through a socket library
over Ethemnet using the TCP/IP pro-
tocol) to a server process listening
through a socket library on a remote
Sun system.
m Last, convert the homogeneous dis-
tributed application into a heteroge-
neous distributed application. This
stage may require technology from the
handful of independent communica-
tions vendors who specifically connect
dissimilar systems. These vendors pro-
vide standard communications inter-
faces in non-native environments.

These firms include Excelan and
Kinetics, the Wollongong Group, CMC,
Micom-InterLan, 3COM/Bridge,
Retix, and Touch Communications.
Private consultants are also active in
the field.

ACCOMPLISHING THE
FINAL STEP

How do you accomplish this final step?
First, you must port the client and
server programs to the operating sys-
tems of the desktop and host comput-
ers on which the vendor wishes to mar-
ket the application. In porting the
operating systems interface module,
the developer may take advantage of
the special features of the particular
operating system.

If, for example, the vendor is port-
ing a client program to a Macintosh,
the program will probably be more
marketable if the mouse and icon li-
braries are utilized to yield the icon-
driven interface to which Mac users
are accustomed. The above-mentioned
code modularization allows significant
modifications of the user interface op-
erating system-specific portion with-
out affecting the core client code.

You must then port the client and
server programs to a communications
interface available across the range of
systems over which the application is
to be distributed. Suppose, for exam-
ple, the software vendor wishes to
have client implementations on DOS
and 0S/2, and server implementations
on VAX/VMS and Sun systems.

Because the vendor (in this exam-
ple) has already ported the communi-
cations module of the client and server
programs to BSD sockets between two

Sun systems, his work is virtually
done. The vendor needs merely to ac-
quire the BSD socket technology for
DOS, 05/2, and VMS from a commu-
nications technology vendor.

He then makes minor modifications
to ensure the socket communications
module works properly and specifies
to his customers that they get the ap-
propriate communications run-time
module (say, sockets for DOS) to run
their application on that system type.

OUT IN THE MARKET

Based on the technology just de-
scribed, there are several heteroge-
neous distributed applications on the
market. Most are implemented on
socket libraries.

Oracle Corp., for example, markets
a heterogeneous distributed database.
It offers users on DOS, UNIX, XENIX,
VMS, or IBM MVS the ability to
transparently share information dis-
persed anywhere across the network.
Oracle’s application is implemented on
Excelan’s dissimilar systems commu-
nications technology and socket library
for DOS, XENIX, UNIX, and VMS.

Moreover, an Oracle DOS user may
concurrently access remote database
information and files on a Novell
server, thanks to the communication
technology’s ability to run both IPX
and TCP/IP protocols concurrently
across Ethernet.

There are many other distributed
applications on the market. Locus
Computing offers X Windows products
for both DOS and UNIX V.3/386
systems. These allow DOS or UNIX
desktop users to view and interact
with programs located on any dis-
similar TCP/IP host running X.11
protocols.

PRODUCTS DIFFER WIDELY

Although it appears at first glance that
the application interacts only with the
communications subsystem through
the communications programming in- *
terface, there is more to the story. The
implementation of the underlying dis-
similar communications technology di-
rectly affects the overall robustness,
performance, applications indepen-
dence, code maintainability, ease of
development, and future migration ca-
pability of the heterogeneous distri-
buted application.

The implementation also limits the
range of dissimilar systems over which
the application is distributed. Internal
implementations of dissimilar systems
communications technologies differ
widely. How is the harried software

UNIXWORLD SEPTEMBER 1988

Perspectives

developer to deal with this problem?

In selecting the programming inter-
face, first determine whether it is
available on the system types you
wish to interconnect. Then, review
the extent to which the interface ad-
heres to the interface standard. For
example, is the socket library imple-
mented on DOS as it is under BSD
UNIX? Your ease of development and
the degree of total interoperability will
be directly related to this degree of
standardization.

Is the library consistently imple-
mented across all operating system
types? Does the communications sub-
system reliably send messages be-
tween the required dissimilar sys-
tems? The answer to the last question
should be yes even for systems that
the communications vendor doesn't ac-
commodate with products.

For example, does the communica-
tions subsystem interoperate with the
kernel-based TCP/IP provided in all
BSD systems (for which the dissimilar
communications vendor does not spe-
cifically offer products)? Are messages
delivered with the required speed? For
example, is the physical network me-
dium fast, and is the communications
subsystem efficient ?

THE POTENTIAL BOTTLENECK

Because communications times are
significantly slower than local disk or
CPU speeds, the communications link
is the potential bottleneck in any dis-
tributed application. The ultimate test,
and in large part what is meant by lo-
cation transparency in distributed ap-
plications, is whether a remote opera-
tion appears to the user to have the
same access time as a local operation.
Is the communications subsystem in-
ternally implemented such that it is
minimally affected when operating
system revisions are made? This con-
sideration is most important since a
heterogeneous distributed application

uses a communication subsystem im-
plemented under many different gper-
ating systems.

Many perverse problems can arise
for several reasons: certain operating
systems are typically revised every six
months, and perhaps the application is
distributed across several different op-
erating systems. If the communica-
tions subsystem is not shielded from
host operating system changes, there

In selecting the
programming interface,
determine whether it is
available on the system

types you wish to
interconnect.
is a good chance that, too often, a com-
munications subsystem under one of
the operating systems will cease to
function properly.
failures create a maintenance

problem that is impossible to solve.
Certain vendors have taken great care
to avoid this pitfall by implementing
protocols on a board subsystem or
within a host-based framework —both
of which are separated from operating
system kernels through a driver.

The latter implementation ensures
a consistent implementation of proto-
cols regardless of operating system
type or revision. In contrast, some ven-
dors implement their host-based pro-
tocols in the operating system kernel.

OTHER IMPORTANT QUESTIONS

You should ask other questions about
the communications subsystem. Is it
implemented so that you can easily
add new types of system connections?
Is there a provision, by virtue of the
way the subsystem is implemented, to
allow clients and servers to communi-
cate between systems located on dis-
similar networks? And can the com-

munications subsystem communicate
with, and eventually transition to,
OSI protocols when they become
prevalent?

In general, the communications sub-
system will not be able to connect new
systems quickly unless it is itself mod-
ular (the bus interface, operating in-.
terface, and protocol stacks should be
contained in different hardware and
software modules). The ability to allow
applications to span dissimilar net-
works requires minimally that the sub-
system can run different protocol
stacks simultaneously.

Note also that for applications to
span dissimilar networks that run both
different protocols and different ca-
bles, the communications vendor must
offer point-to-point communications
through gateways.

The subsystem must be able to
smoothly evolve into an OSI imple-
mentation without the purchase of new
hardware. The ability to run multiple
protocol stacks simultaneously allows
existing hardware investments to
evolve to OSI solutions with software
updates.

No single communications technol-
ogy interconnects on a single network
all the systems that populate today’s
organizations, and offers a single con-
sistent programmatic interface across
all those systems. However, BSD sock-
ets on Ethernet running TCP/IP best
approximates that complete offering.
OSI, perhaps in some combination
with Systems Application Architecture
(SAA)—that battle has yet to be
waged —intends to offer the future’s
complete heterogeneous connectivity
solution.

In the meantime, for present needs
that must be met, it is best to build
products on real, existing technol-
ogies, fill in the gaps with other
spanking-new communications tech-
nologies where necessary, and wait
for OSI migration. 0O -

Reprinted with permission from UNIXWORLD Magazine.

© 1988 Tech Valley Publishing. All rights reserved.

