NETWORK SOFTWARE

by Eric W. Wasiolek

Distributing Data

DISTRIBUTED APPLICATIONS ARE THE NEXT STEP IN LAN CONNECTIVITY.

Nl.t““‘n,‘“”

=]

There is a critical need in to-
day's organizations to freely and
transparently share any and all in-
formation, located on any and all
computers in the organization.
But with most organizations in-
creasingly populated by a wider
and wider variety of desktop, mini,
and mainframe computers — run-
ning a variety of operating
Systems — the task does not look

distributed applications, which
can range from distributed
databases and distributed file
systems to networked windowing
systems, are the next step in the

Here's an overview of the
distributed application world, tak-
ing a close look at what
distributed systems are available
and how they work.

the communications indus-
try evolves, connectivity is
being waged at increasing-

ly sophisticated levels. Yesterday, just
physically connecting machines of the
same type lo a common wire 1o pass in-
formation at acceptable transfer rates
was an accomplishment. Now, utilities
which allow the transfer of files, the abili-
ty to emulate a terminal on a remote
system and the ability to share electronic
mail with other systems on the network
are fairly commonplace.

Today, though, the connectivity bat-

tle is being waged at the application
level, with distributed file systems, net-
worked windowing, distributed
databases and various distributed ap-
plications products which provide
transparent access between systems of
dissimilar type.

What Users Want

Because of the increasing
presence of many different types of
computers and operating systems in to-
day’s organizations, information a user
needs may well not only be located on
a system other than theirs, but on a dif-
ferent type of system altogether. Informa-
tion Is increasingly dispersed across the
organization on many different types of
computers.

This trend is exacerbated by the
strong inclination to replace terminals
with desktop computers. This situation
creates a serious deficiency in the
organization: if users are not connected
to all other systems with an ability to
share information between those
systems, islands of information form,
preventing users from accessing all of
the data they need to do their jobs.

The only remedy is to connect
users to one another through a network
that can connect dissimilar computers,
and offer some application connectivity
s0 that information on any one system
may be accessed from any other
system.

One answer to this need has been
to connect groups of homogeneous
users in a system like a PC LAN, and
to offer gateway or terminal emulation
connections to hosts like
IBM mainframes, where most corporate
information is stored. However, such a
solution is clumsy at best. First, terminal
emulation approaches require that the
user learn the operating system and ap-
plications on the host, rather than
presenting the information to the user
through his familiar operating system,
This inconvenience is magnified when
the user needs to access information
that resides on many ditferent types of

hosts. Second, gateway approaches are
slow, especially for terminal emulation
tasks. Plus, if data is transferred to a
local host via a file transfer utility, the
data is most likely in the wrong form to
be useful on the local system. Either the
byte ordering is wrong, or the data for-
mat is not acceptable to the local
spreadsheet or database manager.

What users in today's complex |
heterogeneous environments require is
to be able to interact with remote data
and programs regardiess of the type of
system on which they are located,
through a unified windowing interface.
Ideally, the user should be able to sit at
his desk and have access to information
located anywhere in the organization as
if the information were located on his
desktop. This means that his access to
that information should be quick and
transparent. As an example, an Apple
Macintosh user should be able to call up
his favorite spreadsheet program by
clicking on the appropriate icon and load
a file which is actually located on an IBM
mainframe, graphically displaying the
spreadsheet data as if it were from a file
located on his local drive. The same
user should be able to request data from
a VAX/VMS system, and get the infor-
mation with the same level of
transparency.

Though this kind of connectivity is
still in its infancy, there are in fact pro-
ducts on the market today which offer
transparent access across different
systems. All of these products are com-
prised of distributed applications, im-
plemented with a communications
technology which connects dissimilar
systems — usually a LAN. For lack of
a better name, we'll call these products
heterogeneous distributed applications,

What'’s Available

Heterogeneous distributed applica- |
tions exist, but they are far from abun-
dant, Part of this is due to their re-
quirements for sophisticated software
engineering and the scarcity of networks
(usually based on TCP/IP or OSI) that
offer the necessary point-to-point com-

LAN Magazine

SEPTEMBER 1988

NETWORK SOFTWARE

munications between dissimilar
systems.

Several database vendors offer
distributed implementations of their pro-
ducts, which allow users on one type of
system to access data on another
system transparently and fairly efficient-
ly, as if the data were on the user’s local

hard disk. Vendors offering such |

systems include Gupta Technologies
(Menlo Park, CA), Oracle (Belmont, CA),
Informix (Menlo Park, CA), Relational
Technologies (Alameda, CA) and some
others.

Likewise, several vendors are
creating implementations of networked
windowing systems, which allow view-
ing the output of and interacting with
programs which are actually executing
on different systems located across a
common network. Vendors marketing
networked windowing systems include
Locus Computing (Santa Monica, CA)
with its XSight product line, Graphics
Software Systems, with its X/Windows
product, Grasshopper with its NEWS
product for the Macintosh and Sun
Microsystems, with its XINEWS window-
ing system.

How They Work

There are two fundamental com-
ponents to any heterogeneous
distributed application: the distributed
application and the communications
technology upon which it is built. A
distributed application is generally split
into two or more programs, which con-
currently execute on different computers
and yet communicate with each other by
passing messages. Typically, a
distributed application is functionally
split into client programs, which usually
run on users’ desklop computers, ac-
cepting their inputs and displaying the
results of their requests, and server pro-
grams, which usually run under multi-
user operating systems on larger super-
micro, mini or mainframe computers,
and execute user requests for resources
on behalf of messages sent by the client
program.

Most heterogeneous distributed ap-
plications are implemented according to
this client-server architecture. Client pro-

Jgrams issue request messages through
a commeon communications interface to
server programs on different types of
systems, which execute the request and
return information.

The distributed application,
however, requires a communications
subsystem to pass messages between
client programs and server programs.
Moreover, if client and server programs
reside on different types of computers,

l

CLIENT-SERVER ARCHITECTURE

Request
Client —— Server
Program - Program
Answer
- Data
.
o == 5
Network Transport

Figure 2 — Most distributed appiications today are buit on the client-server model,
where a client application — typically running on a desktop PC — makes a request
for data over the network, and a server application — typically running on a larger

host — services it.

as in our example, the distributed ap-
plication requires a communications
subsystem that specifically allows the
passage of messages between
dissimilar systems. Such a communica-
tions subsystem has three basic com-
ponents: the application programming
interface (API), the transport subsystem
and the physical network link. The API
allows the client and server programs to
read and write messages to the com-
munications subsystem. The “write"
command specifies the logical name of
the system to which the message is to
be delivered. The '"read” command
listens for messages delivered from
remote programs to the local program.
API commands do not specify physical
addresses of systems on the network;
the underlying communications
transport subsystem resolves the
physical location of the destination
system from the logical name.

It is important to note that the API
isolates the client and server programs
from the underlying communications
transport mechanism, so that the ap-
plication never needs to specify how a
message is to be delivered to its destina-
tion, just that it is to be delivered to that
destination. The transport subsystem
accepts messages from the API, deter-
mines their physical destination and
sends them to the physical network;
conversely, it receives messages from
the physical network and presents the
message to be read by the application
program through the API. Finally, the
physical network converts the message
into a physical signal format which may
be sent over a wire to the destination
system,

Distributed Databases

As an example, a Macintosh user
may request information from a
database which is actually located on a
VAX running VMS located in a different
department. In this case, the user’s re-
quest is accepted by the client program,
packaged into a message, most likely in
Structured Query Language (SQL) for-
mal, shipped across the network to the
VAX system, where a server program is
in turn “listening”* for requests from the
client program. The server program then
receives the SQL message, decodes it,
executes the request which, say, is to
locate all records in the database on the
VAX where bicycles are of type
“'Schwinn,” and bills are of type “un-
paid.” It then ships the records back to
the client, which in turn displays them,
perhaps in a graphic format, to the user
who requested them.

Theoretically, client and server pro-
grams may exist in a many-to-many rela-
tionship, where multiple users interac-
ting through client programs may re-
quest information located on multiple
remote hosts running multiple server
programs. In the case where multiple
clients simuitaneously request the same
resources, say the same database
record, the server program arbitrates ac-
cess to the common resource, using the
same kind of record or file locking sup-
ported by a system like DOS 3.1.

Networked Windowing
Systems

There are currently two popular
models of networked windowing
systems: X/Windows and NEWS

LAN Magazine

SEPTEMBER 1988

 NETWORK SOFTWARE

(Microsoft and IBM’'s Presentation
Manager is not a networked windowing |
system). Both have emerged from the
UNIX world but are now being made
available in heterogeneous |
implementations.

With networked windowing
systems, the client-server model is
reversed. The server program resides
on the desktop system, and the client
program resides on the multiprocessing
host. The server program resides on the
desklop because it 'serves' client pro-
grams executing on various host com-
puters across the network with a com-
mon windowing resource, namely the
screen of the desktop computer. Since
the window server may accept the out-
put of many client programs
simultaneously, the desktop operating |
system must either actually be multitask-
ing, or at least simulate multitasking.

The two popular models for
heterogeneous networked windowing
systems, X/Windows and the
NEWS/PostScript mode!, both use a
reversed client-server architecture, with
window servers running on desktop
systems and window clients running on
hosts. X/Windows is a public domain
specification from M.LT, and is the most |
popular networked windowing system l

on the market. X/Windows works by pip-
ing the output of a program running on
a host computer over the network to a
window on the desktop system. The pro-
gram on the host is typically a graphics
program.

Conversely, the desktop user may
perform program control of the remote
applicaticn through a window; internal-
ly, the system is sending control se-

quences from the window server to the |

window client. If the window server is
simultaneously viewing the output of
multiple remote window clients, the user
interacts with each remote program se-
quentially through an ‘‘active window,"
which maps the user's keystrokes to the
particular remote program.

Under the PostScript model, the
remote client program pipes a series of
PostScript commands 1o the local server
program, which interprets them to form
an image of the graphic output from the
client program. In effect the remote
client program sends a PostScript
graphic language description program
to the local server, which executes the
Postscript program to form an image
that is the graphical output of the remote
client.

This networked windowing model
has several advantages. First, it is more

efficient: less network traffic is created
by sending a PostScript description of
the graphic image across the network
than is by sending the bit-map for the
graphic image, which is what X/Win-
dows does. Second, much of the input-
response loop may be handled locally,
since the PostScript program is running'
locally. And, finally, PostScript can be
sent to any PostScript device, like a laser
printer or a facsimile machine.

There are a variety of X/Windows
NFS client may access as an NFS file
the same file, located on a VAX/VMS
server, that an OS/2 LAN Manager client
would access as an OS/2 file.

Some vendors are taking steps to
provide a universal DFS — a DFS which
allows a user to access files located on

different types of systems using different
l types of DFSs — all as if the files were
local. For example, with a universal DFS,
a Macintosh user running on an Ap-
pleTalk LAN should be able to access a
file located on a UNIX system running
LM/X, as if the file were a local Mac file.
Internally, such a universal DFS must
resolve DFS protocol differences bet-
ween AppleTalk and LM/X, as well as
send the disk access request and
returned file between hosts running
i dissimilar operating systems.

TWO MODELS OF NETWORKED WINDOWING SYSTEMS

X window
Client
Program 1

Host

News
Client 1

: o, Postscript

Interpretor

News
Server

SEPTEMBER 1988

. NETWO RK SOFTWARE

Other Distributed
Applications

The applications discussed so far
are the most common examples of
heterogeneous distributed applications.
But they are by no means the only types.
Actually, the standard suite of TCP/IP
and OSI applications are themselves
heterogeneous distributed applications,
including SMTP or X.100 for networked
mail, TELNET or VTP for terminal
emulation, FTP or FTAM for file transfer
and others. Each of these standard ap-
plications includes a client and a server
portion which may reside on dissimilar
computers, Other custom applications
are emerging, such as Applix's ALIS in-
tegrated office automation package,
which allows accessing remote spread-
sheet, textual, graphic or database data
from within a multiwindowing environ-
ment on the Ilocal desktop.
Heterogeneous distributed applications
also have the capability to unite diverse
hardware. For example, a server pro-
gram could collect hardware signals
from shop floor instruments, storing
them in a local database and offering
remote clients access to the information.

How It All Relates

Most heterogeneous distributed ap-
plications are built according to the
client-server model. The client and
server portions of the application send
messages and data between each other
through a common communications link
across heterogeneous hosts.

It is possible for one type of
distributed technology to use another.
For example, a heterogeneous
distributed database program may be
implemented by having non-distributed
databasp programs make file system
calls 1o a heterogeneous distributed file
system. In such an implementation, the
database simply makes local file system
calls, and if the files it needs to access
are located remotely on a dissimilar
system, the heterogeneous DFS locates
and NEWS/Postscript products on the
market. The X.11 protocol standara of
X/Windows, is the industry standard for
UNIX systems and it is migrating to other
platforms. Locus Computing has im-
plemented an X/Window server for DOS
with a product called PC-XSight. Locus
also markets a UNIX V.3 '386-based
X/Window server which allows the user
to run a local DOS task under

one window, while interacting with other
remote programs in other windows. Sun
Microsystems has a networked window-
ing system called NEWS, which is bas-
ed on the Postscript model. However,

9

© Fne CFe
NFS Client ._.-_. m ‘_— Lan Manager
Iu!'lo i Cooten .
Commuib || s Virtual File System TR ' | commus :
Mac BRI VAX/VMS s PS/2 0512
& i
& _ »
1t 4 i -
- m

ﬂawu—bu "unmal mmw(om

; mm,bmlhckmmmdlumbcalm wmwmopse Itlooks_

%'m m'm os:z-und“ PS2

nmm

cohm
mmmm;
both can access the

Merge-386 (virtual DOS under UNIX)in |

Sun will soon release an “X/NEWS"
server which allows concurrent interac-
tion between X/Windows- and
Postscnpt-based programs across the
network

Distributed File Systems

A heterogeneous distributed file
system s a distributed application which
allows users to access remote files
located on different types of systems, as
if they were local files. There are three
such file systems available now: Sun
Microsystems' NFS, available across
MS-DOS (licensed as PC-NFS from Sun
and Locus Computing), VMS (from Ex-
celan and Wollongong), Macintosh (from
the University of Michigan) and many
varieties of UNIX (through Lachman
Associates); MS-Net (from Microsoft),
otherwise known as the Server M
Block (SMB) protocols, available across
PC- and MS-DOS, VMS (from Syntax
Corporation), Xenix (marketed as Xenix-
NET from the Santa Cruz Operation)
and various versions of UNIX; and the
forthcoming FTAM from the OSI pro-

tocols, specified to run across all.

systems that implement it. Additionally,
TOPS A Sun Microsystems Company's
TOPS, Apple’'s AppleShare and
Microsoft's OS/2 LAN Manager (and the
LM/X version for UNIX) are available in
limited non-native environments,

Each distributed file system (DFS)
consists of a DFS client and a DFS
server. Say a user on a DOS run-
ning PC-NFS — a DFS client — wants
a file that resides on a VAX/VMS system,
running VMS/NFS — a DFS server. The

PC-NFS client redirects the DOS file
system call across the network to be ex-
ecuted by the VMS/NFS server. The
server locates the file and sends it
across the network. If all of this is done
efficiently, i.e., with caching and across
a fast network medium like Ethernet, the
remote file access is indistinguishable
to the user from a local file access.
In a distributed file system, client
programs from different DFS protocol
families may transparently share files on
a remote host. For exampie, a Macintosh °
the file and returns it to the local
database application. Likewise, vertical
or database software, distributed or not,
may send its screen output to the win-
dow server on the desktop. This would
allow a user to simultaneously view
database data in one window concurrent
with other local and remote task output
in other windows, on the same screen.

The Future

The emerging technologies dis-
cussed in this article provide new vistas
of development. Much work yet remains
in truly integrating heterogeneous
distributed technologies to present users
with a truly unified and transparent win-
dow to resources located on different
systems across the network. ()

EXCELAN

Eric Wasiolek (s product marketing
manager for UNIX products at departmen-
tal LAN vendor Excelan (San Jose, CA),

SEPTEMBER 1988

LAN Magazine

