Systems applications
!
extend capabilities of

an Operqting system
and allow richer I/O
and file management,
as well as a richer
applications

environment.

by Eric W. Wasiolek,
Excelan

Software Industry Trend
To Incorporate System
Applications Into OS

omputer operating
systems are be-
coming increas-
ingly sophisticated.
Many have the abil-
ity to distribute data across machines,
to interact with the graphics output of
programs located on other computers,
and even run executables designed for
other operating systems. These ‘ex-
tended’ operating system capabilities
are derived from the wide-scale incor-
poration of system level technologies
such as graphics subsystems, net-
worked window managers, file redirec-
tors, co-resident operating systems, in-
dexed record handlers, and network-
ing. This article will discuss the tech-
nical details and industry significance
of incorporating systems applications
into operating system software.

To fully comprehend the impact of
this trend, its useful to understand
what an operating system is and how it
differs or relates to a systems or verti-
cal application. Fundamentally.
operating systems are comprised of
subsystems which manage hardware
resources. Systems applications extend
the basic functionality of these sub-
systems (Fig 1) Like operating
systems, systems applications are ge-
neric in nature, provide general

grammatic interfaces to allow invoca-
tion of their services. The fact that
there are so few appreciable differences
between operating systems functions
and systems applications functions ac-
counts in part for the trend of simply
incorporating such applications into
the operating system.

‘Incorporation’ is simply a tenden-
cy among operating system vendors,
whether software houses or systems

integrators, to bundie systems ap-
plications with the operating system
software, This bundling may range
from offering the system application as
an operating system option to distrib-
uting the application’s routines as a
part of the operating system utilities or
libraries, to incorporating the ap-
plication as a standard set of operating
system kernel routines.

Technically. systems applications
function as operating system exten-
sions. Networking. graphics
subsystems, and window managers ex-
tend the basic V'O subsystem
functionality. Networking allows ap-
plications to read/write bytes to/from
peripheral devices on remote comput-
ers. Graphics subsystems allow
sending voluminous bit patterns at
high transfer rates to terminal screens.
Window managers control the input
and output of data to/from specified
screen areas. Distributed file servers
(DFS), indexed record handlers, and
networked indexed sequential access
methods (1SAMs) allow the file sub-
system to store/retrieve remote/local
files. and to read/write bytes within
files in a key-indexed fashion.

Co-resident operating systems ex-
tend the overall applications execution
environment so applications designed
for different operating systems may run
on the same computer. Jointly, these
applications extend basic OS func-
tionality from character screen 1O to
graphical, windowed, and networked
/0, and from local sequential file
management to distributed and index-
ed file management, and finally
from a homogeneous to a hetero-
geneous applications execution
environment.

Extended Operating Systems

Recent activity in the computer in-
dustry indicates the strength of the
trend toward extended operating sys-
tems —Sun Microsystems is perhaps

M



COMPUIEK IELMINVULLADT REs IEw

the foremost example. Sun's SUNOS
unix derived operating system

has a DFS (Network File System). TCP/
IP networking, a networked graphical
windowing system (X/NeWs). and a,
386 version that includes a DOS CO-res-
ident operating system. Microsofts os 2
has a graphical window manager
called Presentation Manager: its ex-
tended edition includes an SQL-based
database client, 3270 terminal emula-
tion, and a distributed file system
(LAN Manager) based on popular net-
working protocols (TCP/P. IS0, and
NetBEUVTOKREUI). AT&T and the San-
ta Cruz Operation have incorporated
the streams technology into their OS
which provides a framework for the
execution of multiple network proto-
cols. Even DEC and IBM have an-
nounced plans to extend their operat-
ing systems with XWindows, NFS, and
VPIX. Apples A/'UX incorporates XMWin-
dows and TCPAP networking as well.

1/0 Subsystem Extensions

The 'O subsystem controls how
data flows between applications and
peripheral devices. including input de-
vices like keyboards and mice, and
output devices like terminal screens
and printers. Users always interact
with applications only through the 1O
subsystem. Systems applications like

device drivers for specialized periph-
erals, graphics subsystems. window
managers, and network protocols are
being incorporated into IO sub-
systems to allow users to view and
interact with applications in a greater
variety of ways.

Graphics Device Support -

It’s increasingly popular to include
graphics terminals and associated
controllers with computer hardware as
CPU power cheapens, and as the num-
ber of graphics-based applications
increase. However. basic operating sys-
tems are designed to read/write
characters, not graphic bit streams, to
terminal devices.

To meet the requirements for
graphics display. many operating sys-
tem vendors have, or are planning to
include, graphics library interface sup-
port (most according to the CGl or
GKS standards) and kernel driver sup-
port for popular graphics terminals.
This allows graphics-based applica-
tions to communicate with graphics
controllers and terminals that also
subscribe to these interface standards.
Graphics support is added by bundling
a user library that makes 'O system
calls to a kernel graphics terminal de-
vice driver. Standard user libraries.
such as CGl and GKS. provide a de-

Lo PROCRANMER
” ;
MEwORY
At g 5 COMMMD
VOTCA LANGUAGE
R )
PTG
Na] s
oo v COMMMD
LB UTUTES
| 200 = 3 < VETIN CALL WTENCE LISRARY
i
|
| smviLecen
| MO Y
ot
‘
l

Fig |1 In general. operating systems include & memory manager that allocates RAM for program in-
structions and data. a process scheduler that determines when the CPU will execute specific

routines. a peripheral 10 system that controls ink
mines the organization of data on disk and tape di
these routines through a svstem call interface. Sys!

ormation flow. and a file subsystem that deter-
rives. Vertical applications are shiekded from
tems applications may reside in user of kernel

memory but. like operating system routines. they provide general services to vertical applications
and users Operating system routines. in turn. communicate with hardware through device driver

routines

vice-independent top portion so the
same application may display on a va-
riety of terminals. The bottom half of
the library communicates with device-
specific system calls.

Networking

Network software allows applica-
tions to read write data to/from
network devices (and ultimately appli-
cations on other machines on the
same network). Network software
thereby extends the 1/O subsystem to
include intermachine communication
(e.g. communication with peripheral
hardware physically attached to remote
computers)

This extension involves a protocol
suite and networking card device driver
so an application can send/receive
bytes to'from remote computers
through the local 10 system. User ap-
plications make network calls through a
user library that allows the specifica-
tion of logical machine-name
destinations and transmission modes.
The network library is implemented on
top of the system call interface.

The application, for example,
sends information to a remote system
by issuing a send n bytes to machine X
network library call. It then sends
bytes to a buffer and invokes the write
system call to send the bytes to a ker-
nel buffer and invoke the network
driver routine. The network driver
reads the bytes. processes them. and
writes the doctored bytes to the local
network controller card that converts
them into a physical format that may
be propagated across the me-
dium. Likewise. kernel-based
applications may write to the network
media. though the driver routines are
invoked directly. and not through the
user library.

Window Managers

A recent and sophisticated 1'0
subsystem extension is window man-‘
agement. Window managers are
systems applications that allow users
to view and interact with several appli
cations in different areas of the same
physical screen concurrently. More-
over, some window managers allow
such a capability with graphics appli-
cations as well (e.g. Microsoft’s
Presentation Manager). Some window

in addition. allow interactic
with remote character-based and
graphics terminals. as well as local aj
plications. and even applications
running under dissimilar operating



COMPUTER TECHNOLOGY REVIEW

¥ e -

wause

Fig 2 In a networked graphical window management system. a remote window-client application
sends graphics output 1o a local window server process over a network link,

systems (e.g. MITs X Windows, and
Sun’s NeWsS)

X Windows and NeWS are exam-
ples of networked window managers.
These products are systems applica-
tions that allow a computer program
on one system to send its output to the
graphics terminal screen of another
computer. Such systems applications
are distributed according to the client-
server model. Programs make window
library calls like open a window, draw
a circle, or fill this area with this color.
This user library then sends the graph-
ical description formed by window
commands through a network trans-
port subsystem to a window server on
the system where the destination
screen resides. The window server ac-
cepts the command and writes the
graphical output to the window buffer.
The window server process is device-
specific. The server then invokes L'O
system calls that open the device driv-
er for the graphics terminal screen and
write the screen image to the graphics
device (Fig 2).

File Subsystem Extensions

The file subsystem controls how
applications store retrieve data be-
tween long-term storage devices. Two
related technologies. distributed file
systems (DFS) and 1SAMs. are increas-
ingly being incorporated into OS
distributions. DFS allow applications

to access files located on remote and
local machines. ISAMs allow applica-
tions indexed access to data records
through specified search values. More-
over. distributed 1SAMs may be
incorporated by combining 1SAM and
network technology.

File subsystems are composed of a
file system call interface, a file manager.
a collection of file tables, and a long-
term storage device driver. Applica-
tions make file system calls, like make
a file system, create a file, or read a
file. Such calls invoke OS routines. col-
lectively called the ‘file manager.” which
establish and interact with storage
hardware device drivers through file
tables.

The file manager may be func-
tionally divided into categories of file
management routines: administration,
access authorization and lock manage-
ment, allocation. and access control.
File tables may be functionally divided
into four separate areas:
® A 'per process state table’ that main-
tains information indicating which
processes have which files open with

permissions.
® A ‘file system table’ that maintains a
list of used and free disk blocks, and
maintains blocks that describe the en-
tire file system and its catalogs
(directories).

® A 'file attribute table’ and a ‘file loca-
tion table’ They essentially maintain a
list of what attributes each file has. and
which disk blocks are associated with
which files.

File manager routines search
these tables to perform their functions.
Device drivers, located through an in-
dex table. allow the file manager to
invoke routines to communicate with
particular long-term storage devices
such as disks and tape drives.

ISAM File Subsystem Extensions

ISAMs allow an application to
store, associate, and retrieve data ac-
cording to specified search values. The
most popular example of an ISAMSs use
is a database application. Through an
ISAM, such an application may store
thousands of records in such a way
that subsets thereof may be subse-
quently retrieved by search values.
ISAMs achieve this capability by inter-
nally organizing the bytes with a file
into an index structure and controlling
the access to and from data on disks
through such index structures. The
code that controls indexed access is
typically called the “record handler’

ISAMs are typically marketed as
user libraries. Because they provide
basic file services, they're excellent
candidates for incorporation into file
subsystems, with the ISAM libary calls
becoming a standard part of the file
system call library (adding ‘isamcreat,’
‘isamread,” ‘isamaddindex’ ...). and by
record handler routines becoming addi-
tional file manager routines. AT&T. for
example, has indicated their intention
to incorporate Informix Corp’s C-ISAM
into the UNIX System V kernel. Many
mainframe operating systems, espe-
cially of the IBM vanety. include record
types and ISAM access as standard
services.

A record handler creates a file
through the file system as normal.
However, the record handler subse-
quently controls exactly what type of
information is written to which bytes
and blocks of the file, thereby inter-
nally structuring the file so that
indexed access to data may be
achieved. The record handler typically
organizes the first portion of a file into
index field names followed by the
block number or byte offset of valid
search values for that field. Search val-
ues, in turn, point to addresses of data
records.

Record handler algorithms adjust
byte offsets and block numbers to
continue to correctly address data
items as new index fields. search val-



COMPUTER TECHNOLOGY REVIEW

winter 1968

ues, or records are inserted or deleted.
Record handler implementations deter-
mine which portions of the index
structure stay in core memory. how
many index fields, search values, and
records of what lengths may be inser-
ted, and whether data records are even
contained within the same file as their
index structure.

Networked 1SAMs

It’s technically possible for indexed
access to occur across machine bound-
aries for both ‘cooked’ and ‘raw’ ISAM
implementations. In the cooked case, a
local application makes a local ISAM
user library call which is converted
into the appropriate local file system
calls with the specified byte offsets.
Rather than being executed locally, the
file system calls are then routed
through a network driver to the desti-
nation machine and read by a listening
ISAM subprocess that executes the file
calls and returns the requested bytes
to the local ISAM application buffer
back over the network.

In the ‘raw’ case, the local appli-
cation makes an ISAM call that invokes
a record handler routine which con-
sults a global location file to determine
the byte, block. and machine location
of the requested information. If the in-
formation is on another machine, the
record handler negotiates the byte
transfer through the network sub-
system. Its possible in a raw
implementation for a single database
file to span multiple machines. Net-
worked ISAMs, especially the cooked
variety, are excellent candidates to be
incorporated as standard ‘networked’
operating systems services.

Distributed File System Extensions

Distributed file systems (DFS) are
systems applications that can store
and retrieve files located on long-term
storage peripherals of remote comput-
ers. Depending on the implementation,
remote file access may be partially or
. completely transparent to the user. DFS

typically provide a programmatic inter-
face so applications can be developed
to store and retrieve remote files. Often
the remote interface is identical to the
local interface because the DFS tech-
nology is buried within the kernel.

Examples include Sun Micro-
systems who bundles, Network File
System (NFS) with SUNOS its distribu-
tion of UNIX. AT&T includes the basis
of their UNIX System V DFS called Re-
mote File Sharing (RFS)—namely the
‘streams’ technology and ‘file system
switch' (FSS)—with all Release 3 and

Fig 3 Whether implemented in user or operating system memory, DFS employ a distributed client-
server architecture. The client (or redirector) redirects local file system calls or their file table op-

erathons across the network 1o the remote machine where they are executed. returning information
across the network which is normally returned to the application through the local file subsystem.

later versions. Microsoft is releasing its
0572 LAN manager operating system
with a DFS client and server (MS-NET).

DFS are distributed systems appli-
cations which employ a client-server
architecture. A local client process
called the ‘redirector’ intercepts file
system calls from the local application
and consults a table to determine the
location of the file (whether its on a lo-
cal or remote storage device). If the file
is remote the client process redirects
the local system call via a communica-
tions subsystem to the DFS server
process of the destination machine.
The server then executes the system
call on the remote file system on behalf
of the local client.

Although all DFS follow this gen-
eral model, implementations differ.
The redirector may execute within
user or kernel memory. DFS servers
may be implemented within user or
kernel memory space as well. The DFS
server listens for system calls or file
operations from the client. Upon re-
ceipt the server interacts with the
remote file manager to-execute the sys-
tem call or file table operation.
Typically, the server creates a client-

specific server subprocess to handie all
subsequent interactions with the

client. Communication is streamlined
by avoiding the server bottlenecks
associated with concurrent communi-
cations with multiple clients. If

the server or server agent process is
user memory based, the server exe-
cutes the system call as a normal user
application. If it’s kernel- based, the
server intercepts the entry-point file
subsystem routine, which is the system
call or file table operation.

The DFS communications sub-
system includes network services. No
DFS is possible without networking.
The DFS client and server pass system
call or file operations to one another by
writing to and reading from the com-
munication subsystem$ application
interface. In some instances. this inter-
face may involve a remote procedure
call (RPC) and external (machine- in-
dependent) data representation
interface, as in SUNs NFS use of RPC
and XDR (Fig3) @

Eric W. Waslolek, product manager
of UnIX products at Excelan Corp. (San
Jose, CA) has authored numerous ar-
ticles on heterogeneous and
distributed computing systems and ap-
plications technologies. He graduated
from the Univ. of California at
Berkeley.



